MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfexd Structured version   Visualization version   GIF version

Theorem nfexd 2153
Description: If 𝑥 is not free in 𝜓, it is not free in 𝑦𝜓. (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
nfald.1 𝑦𝜑
nfald.2 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfexd (𝜑 → Ⅎ𝑥𝑦𝜓)

Proof of Theorem nfexd
StepHypRef Expression
1 df-ex 1696 . 2 (∃𝑦𝜓 ↔ ¬ ∀𝑦 ¬ 𝜓)
2 nfald.1 . . . 4 𝑦𝜑
3 nfald.2 . . . . 5 (𝜑 → Ⅎ𝑥𝜓)
43nfnd 1769 . . . 4 (𝜑 → Ⅎ𝑥 ¬ 𝜓)
52, 4nfald 2151 . . 3 (𝜑 → Ⅎ𝑥𝑦 ¬ 𝜓)
65nfnd 1769 . 2 (𝜑 → Ⅎ𝑥 ¬ ∀𝑦 ¬ 𝜓)
71, 6nfxfrd 1772 1 (𝜑 → Ⅎ𝑥𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1473  wex 1695  wnf 1699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034
This theorem depends on definitions:  df-bi 196  df-or 384  df-ex 1696  df-nf 1701
This theorem is referenced by:  nfeud2  2470  nfeld  2759  axrepndlem1  9293  axrepndlem2  9294  axunndlem1  9296  axunnd  9297  axpowndlem2  9299  axpowndlem3  9300  axpowndlem4  9301  axregndlem2  9304  axinfndlem1  9306  axinfnd  9307  axacndlem4  9311  axacndlem5  9312  axacnd  9313  19.9d2rf  28702  hbexg  37793
  Copyright terms: Public domain W3C validator