Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfeud2 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for uniqueness. (Contributed by Mario Carneiro, 14-Nov-2016.) (Proof shortened by Wolf Lammen, 4-Oct-2018.) |
Ref | Expression |
---|---|
nfeud2.1 | ⊢ Ⅎ𝑦𝜑 |
nfeud2.2 | ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfeud2 | ⊢ (𝜑 → Ⅎ𝑥∃!𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2462 | . 2 ⊢ (∃!𝑦𝜓 ↔ ∃𝑧∀𝑦(𝜓 ↔ 𝑦 = 𝑧)) | |
2 | nfv 1830 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
3 | nfeud2.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
4 | nfeud2.2 | . . . . 5 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓) | |
5 | nfeqf1 2287 | . . . . . 6 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑦 = 𝑧) | |
6 | 5 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥 𝑦 = 𝑧) |
7 | 4, 6 | nfbid 1820 | . . . 4 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥(𝜓 ↔ 𝑦 = 𝑧)) |
8 | 3, 7 | nfald2 2319 | . . 3 ⊢ (𝜑 → Ⅎ𝑥∀𝑦(𝜓 ↔ 𝑦 = 𝑧)) |
9 | 2, 8 | nfexd 2153 | . 2 ⊢ (𝜑 → Ⅎ𝑥∃𝑧∀𝑦(𝜓 ↔ 𝑦 = 𝑧)) |
10 | 1, 9 | nfxfrd 1772 | 1 ⊢ (𝜑 → Ⅎ𝑥∃!𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 195 ∧ wa 383 ∀wal 1473 ∃wex 1695 Ⅎwnf 1699 ∃!weu 2458 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-eu 2462 |
This theorem is referenced by: nfmod2 2471 nfeud 2472 nfreud 3091 |
Copyright terms: Public domain | W3C validator |