Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atlatle Structured version   Visualization version   GIF version

Theorem atlatle 33625
 Description: The ordering of two Hilbert lattice elements is determined by the atoms under them. (chrelat3 28614 analog.) (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
atlatle.b 𝐵 = (Base‘𝐾)
atlatle.l = (le‘𝐾)
atlatle.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atlatle (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ ∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌)))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐾,𝑝   ,𝑝   𝑋,𝑝   𝑌,𝑝

Proof of Theorem atlatle
StepHypRef Expression
1 simpl13 1131 . . . . . 6 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → 𝐾 ∈ AtLat)
2 atlpos 33606 . . . . . 6 (𝐾 ∈ AtLat → 𝐾 ∈ Poset)
31, 2syl 17 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → 𝐾 ∈ Poset)
4 atlatle.b . . . . . . 7 𝐵 = (Base‘𝐾)
5 atlatle.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
64, 5atbase 33594 . . . . . 6 (𝑝𝐴𝑝𝐵)
76adantl 481 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → 𝑝𝐵)
8 simpl2 1058 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → 𝑋𝐵)
9 simpl3 1059 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → 𝑌𝐵)
10 atlatle.l . . . . . 6 = (le‘𝐾)
114, 10postr 16776 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑝𝐵𝑋𝐵𝑌𝐵)) → ((𝑝 𝑋𝑋 𝑌) → 𝑝 𝑌))
123, 7, 8, 9, 11syl13anc 1320 . . . 4 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → ((𝑝 𝑋𝑋 𝑌) → 𝑝 𝑌))
1312expcomd 453 . . 3 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → (𝑋 𝑌 → (𝑝 𝑋𝑝 𝑌)))
1413ralrimdva 2952 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → ∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌)))
15 ss2rab 3641 . . 3 ({𝑝𝐴𝑝 𝑋} ⊆ {𝑝𝐴𝑝 𝑌} ↔ ∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌))
16 simpl12 1130 . . . . . 6 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) ∧ {𝑝𝐴𝑝 𝑋} ⊆ {𝑝𝐴𝑝 𝑌}) → 𝐾 ∈ CLat)
17 ssrab2 3650 . . . . . . . 8 {𝑝𝐴𝑝 𝑌} ⊆ 𝐴
184, 5atssbase 33595 . . . . . . . 8 𝐴𝐵
1917, 18sstri 3577 . . . . . . 7 {𝑝𝐴𝑝 𝑌} ⊆ 𝐵
20 eqid 2610 . . . . . . . 8 (lub‘𝐾) = (lub‘𝐾)
214, 10, 20lubss 16944 . . . . . . 7 ((𝐾 ∈ CLat ∧ {𝑝𝐴𝑝 𝑌} ⊆ 𝐵 ∧ {𝑝𝐴𝑝 𝑋} ⊆ {𝑝𝐴𝑝 𝑌}) → ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑋}) ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑌}))
2219, 21mp3an2 1404 . . . . . 6 ((𝐾 ∈ CLat ∧ {𝑝𝐴𝑝 𝑋} ⊆ {𝑝𝐴𝑝 𝑌}) → ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑋}) ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑌}))
2316, 22sylancom 698 . . . . 5 ((((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) ∧ {𝑝𝐴𝑝 𝑋} ⊆ {𝑝𝐴𝑝 𝑌}) → ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑋}) ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑌}))
2423ex 449 . . . 4 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → ({𝑝𝐴𝑝 𝑋} ⊆ {𝑝𝐴𝑝 𝑌} → ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑋}) ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑌})))
254, 10, 20, 5atlatmstc 33624 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑋}) = 𝑋)
26253adant3 1074 . . . . 5 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑋}) = 𝑋)
274, 10, 20, 5atlatmstc 33624 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑌𝐵) → ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑌}) = 𝑌)
28273adant2 1073 . . . . 5 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑌}) = 𝑌)
2926, 28breq12d 4596 . . . 4 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → (((lub‘𝐾)‘{𝑝𝐴𝑝 𝑋}) ((lub‘𝐾)‘{𝑝𝐴𝑝 𝑌}) ↔ 𝑋 𝑌))
3024, 29sylibd 228 . . 3 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → ({𝑝𝐴𝑝 𝑋} ⊆ {𝑝𝐴𝑝 𝑌} → 𝑋 𝑌))
3115, 30syl5bir 232 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → (∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌) → 𝑋 𝑌))
3214, 31impbid 201 1 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ ∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∀wral 2896  {crab 2900   ⊆ wss 3540   class class class wbr 4583  ‘cfv 5804  Basecbs 15695  lecple 15775  Posetcpo 16763  lubclub 16765  CLatccla 16930  OMLcoml 33480  Atomscatm 33568  AtLatcal 33569 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603 This theorem is referenced by:  atlrelat1  33626  hlatle  33702
 Copyright terms: Public domain W3C validator