Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atlatle Structured version   Unicode version

Theorem atlatle 34518
Description: The ordering of two Hilbert lattice elements is determined by the atoms under them. (chrelat3 27113 analog.) (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
atlatle.b  |-  B  =  ( Base `  K
)
atlatle.l  |-  .<_  =  ( le `  K )
atlatle.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
atlatle  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  <->  A. p  e.  A  ( p  .<_  X  ->  p  .<_  Y ) ) )
Distinct variable groups:    A, p    B, p    K, p    .<_ , p    X, p    Y, p

Proof of Theorem atlatle
StepHypRef Expression
1 simpl13 1073 . . . . . 6  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  K  e.  AtLat
)
2 atlpos 34499 . . . . . 6  |-  ( K  e.  AtLat  ->  K  e.  Poset
)
31, 2syl 16 . . . . 5  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  K  e.  Poset
)
4 atlatle.b . . . . . . 7  |-  B  =  ( Base `  K
)
5 atlatle.a . . . . . . 7  |-  A  =  ( Atoms `  K )
64, 5atbase 34487 . . . . . 6  |-  ( p  e.  A  ->  p  e.  B )
76adantl 466 . . . . 5  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  p  e.  B )
8 simpl2 1000 . . . . 5  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  X  e.  B )
9 simpl3 1001 . . . . 5  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  Y  e.  B )
10 atlatle.l . . . . . 6  |-  .<_  =  ( le `  K )
114, 10postr 15457 . . . . 5  |-  ( ( K  e.  Poset  /\  (
p  e.  B  /\  X  e.  B  /\  Y  e.  B )
)  ->  ( (
p  .<_  X  /\  X  .<_  Y )  ->  p  .<_  Y ) )
123, 7, 8, 9, 11syl13anc 1230 . . . 4  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  ( (
p  .<_  X  /\  X  .<_  Y )  ->  p  .<_  Y ) )
1312expcomd 438 . . 3  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  /\  p  e.  A
)  ->  ( X  .<_  Y  ->  ( p  .<_  X  ->  p  .<_  Y ) ) )
1413ralrimdva 2885 . 2  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  ->  A. p  e.  A  ( p  .<_  X  ->  p  .<_  Y ) ) )
15 ss2rab 3581 . . 3  |-  ( { p  e.  A  |  p  .<_  X }  C_  { p  e.  A  |  p  .<_  Y }  <->  A. p  e.  A  ( p  .<_  X  ->  p  .<_  Y ) )
16 simpl12 1072 . . . . . 6  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  /\  { p  e.  A  |  p  .<_  X }  C_ 
{ p  e.  A  |  p  .<_  Y }
)  ->  K  e.  CLat )
17 ssrab2 3590 . . . . . . . 8  |-  { p  e.  A  |  p  .<_  Y }  C_  A
184, 5atssbase 34488 . . . . . . . 8  |-  A  C_  B
1917, 18sstri 3518 . . . . . . 7  |-  { p  e.  A  |  p  .<_  Y }  C_  B
20 eqid 2467 . . . . . . . 8  |-  ( lub `  K )  =  ( lub `  K )
214, 10, 20lubss 15625 . . . . . . 7  |-  ( ( K  e.  CLat  /\  {
p  e.  A  |  p  .<_  Y }  C_  B  /\  { p  e.  A  |  p  .<_  X }  C_  { p  e.  A  |  p  .<_  Y } )  -> 
( ( lub `  K
) `  { p  e.  A  |  p  .<_  X } )  .<_  ( ( lub `  K
) `  { p  e.  A  |  p  .<_  Y } ) )
2219, 21mp3an2 1312 . . . . . 6  |-  ( ( K  e.  CLat  /\  {
p  e.  A  |  p  .<_  X }  C_  { p  e.  A  |  p  .<_  Y } )  ->  ( ( lub `  K ) `  {
p  e.  A  |  p  .<_  X } ) 
.<_  ( ( lub `  K
) `  { p  e.  A  |  p  .<_  Y } ) )
2316, 22sylancom 667 . . . . 5  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  /\  { p  e.  A  |  p  .<_  X }  C_ 
{ p  e.  A  |  p  .<_  Y }
)  ->  ( ( lub `  K ) `  { p  e.  A  |  p  .<_  X }
)  .<_  ( ( lub `  K ) `  {
p  e.  A  |  p  .<_  Y } ) )
2423ex 434 . . . 4  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  ->  ( { p  e.  A  |  p  .<_  X }  C_ 
{ p  e.  A  |  p  .<_  Y }  ->  ( ( lub `  K
) `  { p  e.  A  |  p  .<_  X } )  .<_  ( ( lub `  K
) `  { p  e.  A  |  p  .<_  Y } ) ) )
254, 10, 20, 5atlatmstc 34517 . . . . . 6  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B )  ->  (
( lub `  K
) `  { p  e.  A  |  p  .<_  X } )  =  X )
26253adant3 1016 . . . . 5  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  ->  (
( lub `  K
) `  { p  e.  A  |  p  .<_  X } )  =  X )
274, 10, 20, 5atlatmstc 34517 . . . . . 6  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  Y  e.  B )  ->  (
( lub `  K
) `  { p  e.  A  |  p  .<_  Y } )  =  Y )
28273adant2 1015 . . . . 5  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  ->  (
( lub `  K
) `  { p  e.  A  |  p  .<_  Y } )  =  Y )
2926, 28breq12d 4466 . . . 4  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  ->  (
( ( lub `  K
) `  { p  e.  A  |  p  .<_  X } )  .<_  ( ( lub `  K
) `  { p  e.  A  |  p  .<_  Y } )  <->  X  .<_  Y ) )
3024, 29sylibd 214 . . 3  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  ->  ( { p  e.  A  |  p  .<_  X }  C_ 
{ p  e.  A  |  p  .<_  Y }  ->  X  .<_  Y )
)
3115, 30syl5bir 218 . 2  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  ->  ( A. p  e.  A  ( p  .<_  X  ->  p  .<_  Y )  ->  X  .<_  Y ) )
3214, 31impbid 191 1  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  <->  A. p  e.  A  ( p  .<_  X  ->  p  .<_  Y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2817   {crab 2821    C_ wss 3481   class class class wbr 4453   ` cfv 5594   Basecbs 14507   lecple 14579   Posetcpo 15444   lubclub 15446   CLatccla 15611   OMLcoml 34373   Atomscatm 34461   AtLatcal 34462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-poset 15450  df-plt 15462  df-lub 15478  df-glb 15479  df-join 15480  df-meet 15481  df-p0 15543  df-lat 15550  df-clat 15612  df-oposet 34374  df-ol 34376  df-oml 34377  df-covers 34464  df-ats 34465  df-atl 34496
This theorem is referenced by:  atlrelat1  34519  hlatle  34595
  Copyright terms: Public domain W3C validator