MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac6s4 Structured version   Visualization version   GIF version

Theorem ac6s4 9195
Description: Generalization of the Axiom of Choice to proper classes. 𝐵 is a collection 𝐵(𝑥) of nonempty, possible proper classes. (Contributed by NM, 29-Sep-2006.)
Hypothesis
Ref Expression
ac6s4.1 𝐴 ∈ V
Assertion
Ref Expression
ac6s4 (∀𝑥𝐴 𝐵 ≠ ∅ → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
Distinct variable groups:   𝑥,𝑓,𝐴   𝐵,𝑓
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem ac6s4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 n0 3890 . . 3 (𝐵 ≠ ∅ ↔ ∃𝑦 𝑦𝐵)
21ralbii 2963 . 2 (∀𝑥𝐴 𝐵 ≠ ∅ ↔ ∀𝑥𝐴𝑦 𝑦𝐵)
3 ac6s4.1 . . 3 𝐴 ∈ V
4 eleq1 2676 . . 3 (𝑦 = (𝑓𝑥) → (𝑦𝐵 ↔ (𝑓𝑥) ∈ 𝐵))
53, 4ac6s2 9191 . 2 (∀𝑥𝐴𝑦 𝑦𝐵 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
62, 5sylbi 206 1 (∀𝑥𝐴 𝐵 ≠ ∅ → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wex 1695  wcel 1977  wne 2780  wral 2896  Vcvv 3173  c0 3874   Fn wfn 5799  cfv 5804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-reg 8380  ax-inf2 8421  ax-ac2 9168
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-en 7842  df-r1 8510  df-rank 8511  df-card 8648  df-ac 8822
This theorem is referenced by:  ac6s5  9196  ac9s  9198
  Copyright terms: Public domain W3C validator