Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablonncan Structured version   Visualization version   GIF version

Theorem ablonncan 26795
 Description: Cancellation law for group division. (nncan 10189 analog.) (Contributed by NM, 7-Mar-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
abldiv.1 𝑋 = ran 𝐺
abldiv.3 𝐷 = ( /𝑔𝐺)
Assertion
Ref Expression
ablonncan ((𝐺 ∈ AbelOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷(𝐴𝐷𝐵)) = 𝐵)

Proof of Theorem ablonncan
StepHypRef Expression
1 id 22 . . . . 5 ((𝐴𝑋𝐴𝑋𝐵𝑋) → (𝐴𝑋𝐴𝑋𝐵𝑋))
213anidm12 1375 . . . 4 ((𝐴𝑋𝐵𝑋) → (𝐴𝑋𝐴𝑋𝐵𝑋))
3 abldiv.1 . . . . 5 𝑋 = ran 𝐺
4 abldiv.3 . . . . 5 𝐷 = ( /𝑔𝐺)
53, 4ablodivdiv 26791 . . . 4 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐴𝑋𝐵𝑋)) → (𝐴𝐷(𝐴𝐷𝐵)) = ((𝐴𝐷𝐴)𝐺𝐵))
62, 5sylan2 490 . . 3 ((𝐺 ∈ AbelOp ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐷(𝐴𝐷𝐵)) = ((𝐴𝐷𝐴)𝐺𝐵))
763impb 1252 . 2 ((𝐺 ∈ AbelOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷(𝐴𝐷𝐵)) = ((𝐴𝐷𝐴)𝐺𝐵))
8 ablogrpo 26785 . . . . 5 (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp)
9 eqid 2610 . . . . . 6 (GId‘𝐺) = (GId‘𝐺)
103, 4, 9grpodivid 26780 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝐴𝐷𝐴) = (GId‘𝐺))
118, 10sylan 487 . . . 4 ((𝐺 ∈ AbelOp ∧ 𝐴𝑋) → (𝐴𝐷𝐴) = (GId‘𝐺))
12113adant3 1074 . . 3 ((𝐺 ∈ AbelOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐴) = (GId‘𝐺))
1312oveq1d 6564 . 2 ((𝐺 ∈ AbelOp ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐴)𝐺𝐵) = ((GId‘𝐺)𝐺𝐵))
143, 9grpolid 26754 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐵𝑋) → ((GId‘𝐺)𝐺𝐵) = 𝐵)
158, 14sylan 487 . . 3 ((𝐺 ∈ AbelOp ∧ 𝐵𝑋) → ((GId‘𝐺)𝐺𝐵) = 𝐵)
16153adant2 1073 . 2 ((𝐺 ∈ AbelOp ∧ 𝐴𝑋𝐵𝑋) → ((GId‘𝐺)𝐺𝐵) = 𝐵)
177, 13, 163eqtrd 2648 1 ((𝐺 ∈ AbelOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷(𝐴𝐷𝐵)) = 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ran crn 5039  ‘cfv 5804  (class class class)co 6549  GrpOpcgr 26727  GIdcgi 26728   /𝑔 cgs 26730  AbelOpcablo 26782 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-grpo 26731  df-gid 26732  df-ginv 26733  df-gdiv 26734  df-ablo 26783 This theorem is referenced by:  ablonnncan1  26796
 Copyright terms: Public domain W3C validator