 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  2spthonot Structured version   Visualization version   GIF version

Theorem 2spthonot 26393
 Description: The set of simple paths of length 2 between two vertices (in a graph) as ordered triple. (Contributed by Alexander van der Vekens, 1-Mar-2018.)
Assertion
Ref Expression
2spthonot (((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑉 2SPathOnOt 𝐸)𝐵) = {𝑡 ∈ ((𝑉 × 𝑉) × 𝑉) ∣ ∃𝑓𝑝(𝑓(𝐴(𝑉 SPathOn 𝐸)𝐵)𝑝 ∧ (#‘𝑓) = 2 ∧ ((1st ‘(1st𝑡)) = 𝐴 ∧ (2nd ‘(1st𝑡)) = (𝑝‘1) ∧ (2nd𝑡) = 𝐵))})
Distinct variable groups:   𝑡,𝐸,𝑓,𝑝   𝑡,𝑉,𝑓,𝑝   𝐴,𝑓,𝑝,𝑡   𝐵,𝑓,𝑝,𝑡
Allowed substitution hints:   𝑋(𝑡,𝑓,𝑝)   𝑌(𝑡,𝑓,𝑝)

Proof of Theorem 2spthonot
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 is2spthonot 26391 . . . 4 ((𝑉𝑋𝐸𝑌) → (𝑉 2SPathOnOt 𝐸) = (𝑎𝑉, 𝑏𝑉 ↦ {𝑡 ∈ ((𝑉 × 𝑉) × 𝑉) ∣ ∃𝑓𝑝(𝑓(𝑎(𝑉 SPathOn 𝐸)𝑏)𝑝 ∧ (#‘𝑓) = 2 ∧ ((1st ‘(1st𝑡)) = 𝑎 ∧ (2nd ‘(1st𝑡)) = (𝑝‘1) ∧ (2nd𝑡) = 𝑏))}))
21adantr 480 . . 3 (((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉)) → (𝑉 2SPathOnOt 𝐸) = (𝑎𝑉, 𝑏𝑉 ↦ {𝑡 ∈ ((𝑉 × 𝑉) × 𝑉) ∣ ∃𝑓𝑝(𝑓(𝑎(𝑉 SPathOn 𝐸)𝑏)𝑝 ∧ (#‘𝑓) = 2 ∧ ((1st ‘(1st𝑡)) = 𝑎 ∧ (2nd ‘(1st𝑡)) = (𝑝‘1) ∧ (2nd𝑡) = 𝑏))}))
32oveqd 6566 . 2 (((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑉 2SPathOnOt 𝐸)𝐵) = (𝐴(𝑎𝑉, 𝑏𝑉 ↦ {𝑡 ∈ ((𝑉 × 𝑉) × 𝑉) ∣ ∃𝑓𝑝(𝑓(𝑎(𝑉 SPathOn 𝐸)𝑏)𝑝 ∧ (#‘𝑓) = 2 ∧ ((1st ‘(1st𝑡)) = 𝑎 ∧ (2nd ‘(1st𝑡)) = (𝑝‘1) ∧ (2nd𝑡) = 𝑏))})𝐵))
4 simprl 790 . . 3 (((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉)) → 𝐴𝑉)
5 simprr 792 . . 3 (((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉)) → 𝐵𝑉)
6 3xpexg 6859 . . . . 5 (𝑉𝑋 → ((𝑉 × 𝑉) × 𝑉) ∈ V)
76ad2antrr 758 . . . 4 (((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉)) → ((𝑉 × 𝑉) × 𝑉) ∈ V)
8 rabexg 4739 . . . 4 (((𝑉 × 𝑉) × 𝑉) ∈ V → {𝑡 ∈ ((𝑉 × 𝑉) × 𝑉) ∣ ∃𝑓𝑝(𝑓(𝐴(𝑉 SPathOn 𝐸)𝐵)𝑝 ∧ (#‘𝑓) = 2 ∧ ((1st ‘(1st𝑡)) = 𝐴 ∧ (2nd ‘(1st𝑡)) = (𝑝‘1) ∧ (2nd𝑡) = 𝐵))} ∈ V)
97, 8syl 17 . . 3 (((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉)) → {𝑡 ∈ ((𝑉 × 𝑉) × 𝑉) ∣ ∃𝑓𝑝(𝑓(𝐴(𝑉 SPathOn 𝐸)𝐵)𝑝 ∧ (#‘𝑓) = 2 ∧ ((1st ‘(1st𝑡)) = 𝐴 ∧ (2nd ‘(1st𝑡)) = (𝑝‘1) ∧ (2nd𝑡) = 𝐵))} ∈ V)
10 oveq12 6558 . . . . . . . 8 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑎(𝑉 SPathOn 𝐸)𝑏) = (𝐴(𝑉 SPathOn 𝐸)𝐵))
1110breqd 4594 . . . . . . 7 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝑓(𝑎(𝑉 SPathOn 𝐸)𝑏)𝑝𝑓(𝐴(𝑉 SPathOn 𝐸)𝐵)𝑝))
12 eqeq2 2621 . . . . . . . . 9 (𝑎 = 𝐴 → ((1st ‘(1st𝑡)) = 𝑎 ↔ (1st ‘(1st𝑡)) = 𝐴))
1312adantr 480 . . . . . . . 8 ((𝑎 = 𝐴𝑏 = 𝐵) → ((1st ‘(1st𝑡)) = 𝑎 ↔ (1st ‘(1st𝑡)) = 𝐴))
14 eqeq2 2621 . . . . . . . . 9 (𝑏 = 𝐵 → ((2nd𝑡) = 𝑏 ↔ (2nd𝑡) = 𝐵))
1514adantl 481 . . . . . . . 8 ((𝑎 = 𝐴𝑏 = 𝐵) → ((2nd𝑡) = 𝑏 ↔ (2nd𝑡) = 𝐵))
1613, 153anbi13d 1393 . . . . . . 7 ((𝑎 = 𝐴𝑏 = 𝐵) → (((1st ‘(1st𝑡)) = 𝑎 ∧ (2nd ‘(1st𝑡)) = (𝑝‘1) ∧ (2nd𝑡) = 𝑏) ↔ ((1st ‘(1st𝑡)) = 𝐴 ∧ (2nd ‘(1st𝑡)) = (𝑝‘1) ∧ (2nd𝑡) = 𝐵)))
1711, 163anbi13d 1393 . . . . . 6 ((𝑎 = 𝐴𝑏 = 𝐵) → ((𝑓(𝑎(𝑉 SPathOn 𝐸)𝑏)𝑝 ∧ (#‘𝑓) = 2 ∧ ((1st ‘(1st𝑡)) = 𝑎 ∧ (2nd ‘(1st𝑡)) = (𝑝‘1) ∧ (2nd𝑡) = 𝑏)) ↔ (𝑓(𝐴(𝑉 SPathOn 𝐸)𝐵)𝑝 ∧ (#‘𝑓) = 2 ∧ ((1st ‘(1st𝑡)) = 𝐴 ∧ (2nd ‘(1st𝑡)) = (𝑝‘1) ∧ (2nd𝑡) = 𝐵))))
18172exbidv 1839 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → (∃𝑓𝑝(𝑓(𝑎(𝑉 SPathOn 𝐸)𝑏)𝑝 ∧ (#‘𝑓) = 2 ∧ ((1st ‘(1st𝑡)) = 𝑎 ∧ (2nd ‘(1st𝑡)) = (𝑝‘1) ∧ (2nd𝑡) = 𝑏)) ↔ ∃𝑓𝑝(𝑓(𝐴(𝑉 SPathOn 𝐸)𝐵)𝑝 ∧ (#‘𝑓) = 2 ∧ ((1st ‘(1st𝑡)) = 𝐴 ∧ (2nd ‘(1st𝑡)) = (𝑝‘1) ∧ (2nd𝑡) = 𝐵))))
1918rabbidv 3164 . . . 4 ((𝑎 = 𝐴𝑏 = 𝐵) → {𝑡 ∈ ((𝑉 × 𝑉) × 𝑉) ∣ ∃𝑓𝑝(𝑓(𝑎(𝑉 SPathOn 𝐸)𝑏)𝑝 ∧ (#‘𝑓) = 2 ∧ ((1st ‘(1st𝑡)) = 𝑎 ∧ (2nd ‘(1st𝑡)) = (𝑝‘1) ∧ (2nd𝑡) = 𝑏))} = {𝑡 ∈ ((𝑉 × 𝑉) × 𝑉) ∣ ∃𝑓𝑝(𝑓(𝐴(𝑉 SPathOn 𝐸)𝐵)𝑝 ∧ (#‘𝑓) = 2 ∧ ((1st ‘(1st𝑡)) = 𝐴 ∧ (2nd ‘(1st𝑡)) = (𝑝‘1) ∧ (2nd𝑡) = 𝐵))})
20 eqid 2610 . . . 4 (𝑎𝑉, 𝑏𝑉 ↦ {𝑡 ∈ ((𝑉 × 𝑉) × 𝑉) ∣ ∃𝑓𝑝(𝑓(𝑎(𝑉 SPathOn 𝐸)𝑏)𝑝 ∧ (#‘𝑓) = 2 ∧ ((1st ‘(1st𝑡)) = 𝑎 ∧ (2nd ‘(1st𝑡)) = (𝑝‘1) ∧ (2nd𝑡) = 𝑏))}) = (𝑎𝑉, 𝑏𝑉 ↦ {𝑡 ∈ ((𝑉 × 𝑉) × 𝑉) ∣ ∃𝑓𝑝(𝑓(𝑎(𝑉 SPathOn 𝐸)𝑏)𝑝 ∧ (#‘𝑓) = 2 ∧ ((1st ‘(1st𝑡)) = 𝑎 ∧ (2nd ‘(1st𝑡)) = (𝑝‘1) ∧ (2nd𝑡) = 𝑏))})
2119, 20ovmpt2ga 6688 . . 3 ((𝐴𝑉𝐵𝑉 ∧ {𝑡 ∈ ((𝑉 × 𝑉) × 𝑉) ∣ ∃𝑓𝑝(𝑓(𝐴(𝑉 SPathOn 𝐸)𝐵)𝑝 ∧ (#‘𝑓) = 2 ∧ ((1st ‘(1st𝑡)) = 𝐴 ∧ (2nd ‘(1st𝑡)) = (𝑝‘1) ∧ (2nd𝑡) = 𝐵))} ∈ V) → (𝐴(𝑎𝑉, 𝑏𝑉 ↦ {𝑡 ∈ ((𝑉 × 𝑉) × 𝑉) ∣ ∃𝑓𝑝(𝑓(𝑎(𝑉 SPathOn 𝐸)𝑏)𝑝 ∧ (#‘𝑓) = 2 ∧ ((1st ‘(1st𝑡)) = 𝑎 ∧ (2nd ‘(1st𝑡)) = (𝑝‘1) ∧ (2nd𝑡) = 𝑏))})𝐵) = {𝑡 ∈ ((𝑉 × 𝑉) × 𝑉) ∣ ∃𝑓𝑝(𝑓(𝐴(𝑉 SPathOn 𝐸)𝐵)𝑝 ∧ (#‘𝑓) = 2 ∧ ((1st ‘(1st𝑡)) = 𝐴 ∧ (2nd ‘(1st𝑡)) = (𝑝‘1) ∧ (2nd𝑡) = 𝐵))})
224, 5, 9, 21syl3anc 1318 . 2 (((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑎𝑉, 𝑏𝑉 ↦ {𝑡 ∈ ((𝑉 × 𝑉) × 𝑉) ∣ ∃𝑓𝑝(𝑓(𝑎(𝑉 SPathOn 𝐸)𝑏)𝑝 ∧ (#‘𝑓) = 2 ∧ ((1st ‘(1st𝑡)) = 𝑎 ∧ (2nd ‘(1st𝑡)) = (𝑝‘1) ∧ (2nd𝑡) = 𝑏))})𝐵) = {𝑡 ∈ ((𝑉 × 𝑉) × 𝑉) ∣ ∃𝑓𝑝(𝑓(𝐴(𝑉 SPathOn 𝐸)𝐵)𝑝 ∧ (#‘𝑓) = 2 ∧ ((1st ‘(1st𝑡)) = 𝐴 ∧ (2nd ‘(1st𝑡)) = (𝑝‘1) ∧ (2nd𝑡) = 𝐵))})
233, 22eqtrd 2644 1 (((𝑉𝑋𝐸𝑌) ∧ (𝐴𝑉𝐵𝑉)) → (𝐴(𝑉 2SPathOnOt 𝐸)𝐵) = {𝑡 ∈ ((𝑉 × 𝑉) × 𝑉) ∣ ∃𝑓𝑝(𝑓(𝐴(𝑉 SPathOn 𝐸)𝐵)𝑝 ∧ (#‘𝑓) = 2 ∧ ((1st ‘(1st𝑡)) = 𝐴 ∧ (2nd ‘(1st𝑡)) = (𝑝‘1) ∧ (2nd𝑡) = 𝐵))})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475  ∃wex 1695   ∈ wcel 1977  {crab 2900  Vcvv 3173   class class class wbr 4583   × cxp 5036  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  1st c1st 7057  2nd c2nd 7058  1c1 9816  2c2 10947  #chash 12979   SPathOn cspthon 26033   2SPathOnOt c2pthonot 26384 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-2spthonot 26387 This theorem is referenced by:  el2spthonot  26397  el2spthonot0  26398  2spthonot3v  26403  2pthwlkonot  26412  2spotfi  26419  2spotdisj  26588
 Copyright terms: Public domain W3C validator