Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2polatN Structured version   Visualization version   GIF version

Theorem 2polatN 34236
 Description: Double polarity of the singleton of an atom (i.e. a point). (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2polat.a 𝐴 = (Atoms‘𝐾)
2polat.p 𝑃 = (⊥𝑃𝐾)
Assertion
Ref Expression
2polatN ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑃‘(𝑃‘{𝑄})) = {𝑄})

Proof of Theorem 2polatN
StepHypRef Expression
1 hlol 33666 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ OL)
2 eqid 2610 . . . . 5 (oc‘𝐾) = (oc‘𝐾)
3 2polat.a . . . . 5 𝐴 = (Atoms‘𝐾)
4 eqid 2610 . . . . 5 (pmap‘𝐾) = (pmap‘𝐾)
5 2polat.p . . . . 5 𝑃 = (⊥𝑃𝐾)
62, 3, 4, 5polatN 34235 . . . 4 ((𝐾 ∈ OL ∧ 𝑄𝐴) → (𝑃‘{𝑄}) = ((pmap‘𝐾)‘((oc‘𝐾)‘𝑄)))
71, 6sylan 487 . . 3 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑃‘{𝑄}) = ((pmap‘𝐾)‘((oc‘𝐾)‘𝑄)))
87fveq2d 6107 . 2 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑃‘(𝑃‘{𝑄})) = (𝑃‘((pmap‘𝐾)‘((oc‘𝐾)‘𝑄))))
9 hlop 33667 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OP)
10 eqid 2610 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
1110, 3atbase 33594 . . . . 5 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
1210, 2opoccl 33499 . . . . 5 ((𝐾 ∈ OP ∧ 𝑄 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘𝑄) ∈ (Base‘𝐾))
139, 11, 12syl2an 493 . . . 4 ((𝐾 ∈ HL ∧ 𝑄𝐴) → ((oc‘𝐾)‘𝑄) ∈ (Base‘𝐾))
1410, 2, 4, 5polpmapN 34216 . . . 4 ((𝐾 ∈ HL ∧ ((oc‘𝐾)‘𝑄) ∈ (Base‘𝐾)) → (𝑃‘((pmap‘𝐾)‘((oc‘𝐾)‘𝑄))) = ((pmap‘𝐾)‘((oc‘𝐾)‘((oc‘𝐾)‘𝑄))))
1513, 14syldan 486 . . 3 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑃‘((pmap‘𝐾)‘((oc‘𝐾)‘𝑄))) = ((pmap‘𝐾)‘((oc‘𝐾)‘((oc‘𝐾)‘𝑄))))
1610, 2opococ 33500 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑄 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑄)) = 𝑄)
179, 11, 16syl2an 493 . . . . 5 ((𝐾 ∈ HL ∧ 𝑄𝐴) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑄)) = 𝑄)
1817fveq2d 6107 . . . 4 ((𝐾 ∈ HL ∧ 𝑄𝐴) → ((pmap‘𝐾)‘((oc‘𝐾)‘((oc‘𝐾)‘𝑄))) = ((pmap‘𝐾)‘𝑄))
193, 4pmapat 34067 . . . 4 ((𝐾 ∈ HL ∧ 𝑄𝐴) → ((pmap‘𝐾)‘𝑄) = {𝑄})
2018, 19eqtrd 2644 . . 3 ((𝐾 ∈ HL ∧ 𝑄𝐴) → ((pmap‘𝐾)‘((oc‘𝐾)‘((oc‘𝐾)‘𝑄))) = {𝑄})
2115, 20eqtrd 2644 . 2 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑃‘((pmap‘𝐾)‘((oc‘𝐾)‘𝑄))) = {𝑄})
228, 21eqtrd 2644 1 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑃‘(𝑃‘{𝑄})) = {𝑄})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  {csn 4125  ‘cfv 5804  Basecbs 15695  occoc 15776  OPcops 33477  OLcol 33479  Atomscatm 33568  HLchlt 33655  pmapcpmap 33801  ⊥𝑃cpolN 34206 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-riotaBAD 33257 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-undef 7286  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-p1 16863  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-pmap 33808  df-polarityN 34207 This theorem is referenced by:  atpsubclN  34249
 Copyright terms: Public domain W3C validator