Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  polpmapN Structured version   Visualization version   GIF version

Theorem polpmapN 34216
 Description: The polarity of a projective map. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
polpmap.b 𝐵 = (Base‘𝐾)
polpmap.o = (oc‘𝐾)
polpmap.m 𝑀 = (pmap‘𝐾)
polpmap.p 𝑃 = (⊥𝑃𝐾)
Assertion
Ref Expression
polpmapN ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑃‘(𝑀𝑋)) = (𝑀‘( 𝑋)))

Proof of Theorem polpmapN
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 polpmap.b . . . 4 𝐵 = (Base‘𝐾)
2 eqid 2610 . . . 4 (Atoms‘𝐾) = (Atoms‘𝐾)
3 polpmap.m . . . 4 𝑀 = (pmap‘𝐾)
41, 2, 3pmapssat 34063 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑀𝑋) ⊆ (Atoms‘𝐾))
5 eqid 2610 . . . 4 (lub‘𝐾) = (lub‘𝐾)
6 polpmap.o . . . 4 = (oc‘𝐾)
7 polpmap.p . . . 4 𝑃 = (⊥𝑃𝐾)
85, 6, 2, 3, 7polval2N 34210 . . 3 ((𝐾 ∈ HL ∧ (𝑀𝑋) ⊆ (Atoms‘𝐾)) → (𝑃‘(𝑀𝑋)) = (𝑀‘( ‘((lub‘𝐾)‘(𝑀𝑋)))))
94, 8syldan 486 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑃‘(𝑀𝑋)) = (𝑀‘( ‘((lub‘𝐾)‘(𝑀𝑋)))))
10 eqid 2610 . . . . . . 7 (le‘𝐾) = (le‘𝐾)
111, 10, 2, 3pmapval 34061 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑀𝑋) = {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑋})
1211fveq2d 6107 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((lub‘𝐾)‘(𝑀𝑋)) = ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑋}))
13 hlomcmat 33669 . . . . . 6 (𝐾 ∈ HL → (𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat))
141, 10, 5, 2atlatmstc 33624 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵) → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑋}) = 𝑋)
1513, 14sylan 487 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((lub‘𝐾)‘{𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑋}) = 𝑋)
1612, 15eqtrd 2644 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ((lub‘𝐾)‘(𝑀𝑋)) = 𝑋)
1716fveq2d 6107 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵) → ( ‘((lub‘𝐾)‘(𝑀𝑋))) = ( 𝑋))
1817fveq2d 6107 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑀‘( ‘((lub‘𝐾)‘(𝑀𝑋)))) = (𝑀‘( 𝑋)))
199, 18eqtrd 2644 1 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑃‘(𝑀𝑋)) = (𝑀‘( 𝑋)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  {crab 2900   ⊆ wss 3540   class class class wbr 4583  ‘cfv 5804  Basecbs 15695  lecple 15775  occoc 15776  lubclub 16765  CLatccla 16930  OMLcoml 33480  Atomscatm 33568  AtLatcal 33569  HLchlt 33655  pmapcpmap 33801  ⊥𝑃cpolN 34206 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-riotaBAD 33257 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-undef 7286  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-p1 16863  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-pmap 33808  df-polarityN 34207 This theorem is referenced by:  2polpmapN  34217  2polvalN  34218  3polN  34220  pmapj2N  34233  pmapocjN  34234  2polatN  34236  poml4N  34257  pmapojoinN  34272
 Copyright terms: Public domain W3C validator