Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmapat | Structured version Visualization version GIF version |
Description: The projective map of an atom. (Contributed by NM, 25-Jan-2012.) |
Ref | Expression |
---|---|
pmapat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
pmapat.m | ⊢ 𝑀 = (pmap‘𝐾) |
Ref | Expression |
---|---|
pmapat | ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → (𝑀‘𝑃) = {𝑃}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2610 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | pmapat.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | 1, 2 | atbase 33594 | . . 3 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
4 | eqid 2610 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
5 | pmapat.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
6 | 1, 4, 2, 5 | pmapval 34061 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ (Base‘𝐾)) → (𝑀‘𝑃) = {𝑞 ∈ 𝐴 ∣ 𝑞(le‘𝐾)𝑃}) |
7 | 3, 6 | sylan2 490 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → (𝑀‘𝑃) = {𝑞 ∈ 𝐴 ∣ 𝑞(le‘𝐾)𝑃}) |
8 | hlatl 33665 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
9 | 8 | ad2antrr 758 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) ∧ 𝑞 ∈ 𝐴) → 𝐾 ∈ AtLat) |
10 | simpr 476 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) ∧ 𝑞 ∈ 𝐴) → 𝑞 ∈ 𝐴) | |
11 | simplr 788 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) ∧ 𝑞 ∈ 𝐴) → 𝑃 ∈ 𝐴) | |
12 | 4, 2 | atcmp 33616 | . . . 4 ⊢ ((𝐾 ∈ AtLat ∧ 𝑞 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → (𝑞(le‘𝐾)𝑃 ↔ 𝑞 = 𝑃)) |
13 | 9, 10, 11, 12 | syl3anc 1318 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) ∧ 𝑞 ∈ 𝐴) → (𝑞(le‘𝐾)𝑃 ↔ 𝑞 = 𝑃)) |
14 | 13 | rabbidva 3163 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → {𝑞 ∈ 𝐴 ∣ 𝑞(le‘𝐾)𝑃} = {𝑞 ∈ 𝐴 ∣ 𝑞 = 𝑃}) |
15 | rabsn 4200 | . . 3 ⊢ (𝑃 ∈ 𝐴 → {𝑞 ∈ 𝐴 ∣ 𝑞 = 𝑃} = {𝑃}) | |
16 | 15 | adantl 481 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → {𝑞 ∈ 𝐴 ∣ 𝑞 = 𝑃} = {𝑃}) |
17 | 7, 14, 16 | 3eqtrd 2648 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → (𝑀‘𝑃) = {𝑃}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 {crab 2900 {csn 4125 class class class wbr 4583 ‘cfv 5804 Basecbs 15695 lecple 15775 Atomscatm 33568 AtLatcal 33569 HLchlt 33655 pmapcpmap 33801 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-preset 16751 df-poset 16769 df-plt 16781 df-glb 16798 df-p0 16862 df-lat 16869 df-covers 33571 df-ats 33572 df-atl 33603 df-cvlat 33627 df-hlat 33656 df-pmap 33808 |
This theorem is referenced by: elpmapat 34068 2polatN 34236 paddatclN 34253 |
Copyright terms: Public domain | W3C validator |