Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapat Structured version   Visualization version   GIF version

Theorem pmapat 34067
 Description: The projective map of an atom. (Contributed by NM, 25-Jan-2012.)
Hypotheses
Ref Expression
pmapat.a 𝐴 = (Atoms‘𝐾)
pmapat.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmapat ((𝐾 ∈ HL ∧ 𝑃𝐴) → (𝑀𝑃) = {𝑃})

Proof of Theorem pmapat
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . . 4 (Base‘𝐾) = (Base‘𝐾)
2 pmapat.a . . . 4 𝐴 = (Atoms‘𝐾)
31, 2atbase 33594 . . 3 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
4 eqid 2610 . . . 4 (le‘𝐾) = (le‘𝐾)
5 pmapat.m . . . 4 𝑀 = (pmap‘𝐾)
61, 4, 2, 5pmapval 34061 . . 3 ((𝐾 ∈ HL ∧ 𝑃 ∈ (Base‘𝐾)) → (𝑀𝑃) = {𝑞𝐴𝑞(le‘𝐾)𝑃})
73, 6sylan2 490 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (𝑀𝑃) = {𝑞𝐴𝑞(le‘𝐾)𝑃})
8 hlatl 33665 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
98ad2antrr 758 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) → 𝐾 ∈ AtLat)
10 simpr 476 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) → 𝑞𝐴)
11 simplr 788 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) → 𝑃𝐴)
124, 2atcmp 33616 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑞𝐴𝑃𝐴) → (𝑞(le‘𝐾)𝑃𝑞 = 𝑃))
139, 10, 11, 12syl3anc 1318 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) → (𝑞(le‘𝐾)𝑃𝑞 = 𝑃))
1413rabbidva 3163 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴) → {𝑞𝐴𝑞(le‘𝐾)𝑃} = {𝑞𝐴𝑞 = 𝑃})
15 rabsn 4200 . . 3 (𝑃𝐴 → {𝑞𝐴𝑞 = 𝑃} = {𝑃})
1615adantl 481 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴) → {𝑞𝐴𝑞 = 𝑃} = {𝑃})
177, 14, 163eqtrd 2648 1 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (𝑀𝑃) = {𝑃})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  {crab 2900  {csn 4125   class class class wbr 4583  ‘cfv 5804  Basecbs 15695  lecple 15775  Atomscatm 33568  AtLatcal 33569  HLchlt 33655  pmapcpmap 33801 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-preset 16751  df-poset 16769  df-plt 16781  df-glb 16798  df-p0 16862  df-lat 16869  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-pmap 33808 This theorem is referenced by:  elpmapat  34068  2polatN  34236  paddatclN  34253
 Copyright terms: Public domain W3C validator