Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0grsubgr Structured version   Visualization version   GIF version

Theorem 0grsubgr 40502
 Description: The null graph (represented by an empty set) is a subgraph of all graphs. (Contributed by AV, 17-Nov-2020.)
Assertion
Ref Expression
0grsubgr (𝐺𝑊 → ∅ SubGraph 𝐺)

Proof of Theorem 0grsubgr
StepHypRef Expression
1 0ss 3924 . . 3 ∅ ⊆ (Vtx‘𝐺)
2 dm0 5260 . . . . 5 dom ∅ = ∅
32reseq2i 5314 . . . 4 ((iEdg‘𝐺) ↾ dom ∅) = ((iEdg‘𝐺) ↾ ∅)
4 res0 5321 . . . 4 ((iEdg‘𝐺) ↾ ∅) = ∅
53, 4eqtr2i 2633 . . 3 ∅ = ((iEdg‘𝐺) ↾ dom ∅)
6 0ss 3924 . . 3 ∅ ⊆ 𝒫 ∅
71, 5, 63pm3.2i 1232 . 2 (∅ ⊆ (Vtx‘𝐺) ∧ ∅ = ((iEdg‘𝐺) ↾ dom ∅) ∧ ∅ ⊆ 𝒫 ∅)
8 0ex 4718 . . 3 ∅ ∈ V
9 vtxval0 25714 . . . . 5 (Vtx‘∅) = ∅
109eqcomi 2619 . . . 4 ∅ = (Vtx‘∅)
11 eqid 2610 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
12 iedgval0 25715 . . . . 5 (iEdg‘∅) = ∅
1312eqcomi 2619 . . . 4 ∅ = (iEdg‘∅)
14 eqid 2610 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
15 edgaval 25794 . . . . . 6 (∅ ∈ V → (Edg‘∅) = ran (iEdg‘∅))
168, 15ax-mp 5 . . . . 5 (Edg‘∅) = ran (iEdg‘∅)
1712rneqi 5273 . . . . 5 ran (iEdg‘∅) = ran ∅
18 rn0 5298 . . . . 5 ran ∅ = ∅
1916, 17, 183eqtrri 2637 . . . 4 ∅ = (Edg‘∅)
2010, 11, 13, 14, 19issubgr 40495 . . 3 ((𝐺𝑊 ∧ ∅ ∈ V) → (∅ SubGraph 𝐺 ↔ (∅ ⊆ (Vtx‘𝐺) ∧ ∅ = ((iEdg‘𝐺) ↾ dom ∅) ∧ ∅ ⊆ 𝒫 ∅)))
218, 20mpan2 703 . 2 (𝐺𝑊 → (∅ SubGraph 𝐺 ↔ (∅ ⊆ (Vtx‘𝐺) ∧ ∅ = ((iEdg‘𝐺) ↾ dom ∅) ∧ ∅ ⊆ 𝒫 ∅)))
227, 21mpbiri 247 1 (𝐺𝑊 → ∅ SubGraph 𝐺)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  Vcvv 3173   ⊆ wss 3540  ∅c0 3874  𝒫 cpw 4108   class class class wbr 4583  dom cdm 5038  ran crn 5039   ↾ cres 5040  ‘cfv 5804  Vtxcvtx 25673  iEdgciedg 25674  Edgcedga 25792   SubGraph csubgr 40491 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-iota 5768  df-fun 5806  df-fv 5812  df-slot 15699  df-base 15700  df-edgf 25668  df-vtx 25675  df-iedg 25676  df-edga 25793  df-subgr 40492 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator