Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0grsubgr Structured version   Visualization version   GIF version

Theorem 0grsubgr 40502
Description: The null graph (represented by an empty set) is a subgraph of all graphs. (Contributed by AV, 17-Nov-2020.)
Assertion
Ref Expression
0grsubgr (𝐺𝑊 → ∅ SubGraph 𝐺)

Proof of Theorem 0grsubgr
StepHypRef Expression
1 0ss 3924 . . 3 ∅ ⊆ (Vtx‘𝐺)
2 dm0 5260 . . . . 5 dom ∅ = ∅
32reseq2i 5314 . . . 4 ((iEdg‘𝐺) ↾ dom ∅) = ((iEdg‘𝐺) ↾ ∅)
4 res0 5321 . . . 4 ((iEdg‘𝐺) ↾ ∅) = ∅
53, 4eqtr2i 2633 . . 3 ∅ = ((iEdg‘𝐺) ↾ dom ∅)
6 0ss 3924 . . 3 ∅ ⊆ 𝒫 ∅
71, 5, 63pm3.2i 1232 . 2 (∅ ⊆ (Vtx‘𝐺) ∧ ∅ = ((iEdg‘𝐺) ↾ dom ∅) ∧ ∅ ⊆ 𝒫 ∅)
8 0ex 4718 . . 3 ∅ ∈ V
9 vtxval0 25714 . . . . 5 (Vtx‘∅) = ∅
109eqcomi 2619 . . . 4 ∅ = (Vtx‘∅)
11 eqid 2610 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
12 iedgval0 25715 . . . . 5 (iEdg‘∅) = ∅
1312eqcomi 2619 . . . 4 ∅ = (iEdg‘∅)
14 eqid 2610 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
15 edgaval 25794 . . . . . 6 (∅ ∈ V → (Edg‘∅) = ran (iEdg‘∅))
168, 15ax-mp 5 . . . . 5 (Edg‘∅) = ran (iEdg‘∅)
1712rneqi 5273 . . . . 5 ran (iEdg‘∅) = ran ∅
18 rn0 5298 . . . . 5 ran ∅ = ∅
1916, 17, 183eqtrri 2637 . . . 4 ∅ = (Edg‘∅)
2010, 11, 13, 14, 19issubgr 40495 . . 3 ((𝐺𝑊 ∧ ∅ ∈ V) → (∅ SubGraph 𝐺 ↔ (∅ ⊆ (Vtx‘𝐺) ∧ ∅ = ((iEdg‘𝐺) ↾ dom ∅) ∧ ∅ ⊆ 𝒫 ∅)))
218, 20mpan2 703 . 2 (𝐺𝑊 → (∅ SubGraph 𝐺 ↔ (∅ ⊆ (Vtx‘𝐺) ∧ ∅ = ((iEdg‘𝐺) ↾ dom ∅) ∧ ∅ ⊆ 𝒫 ∅)))
227, 21mpbiri 247 1 (𝐺𝑊 → ∅ SubGraph 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  w3a 1031   = wceq 1475  wcel 1977  Vcvv 3173  wss 3540  c0 3874  𝒫 cpw 4108   class class class wbr 4583  dom cdm 5038  ran crn 5039  cres 5040  cfv 5804  Vtxcvtx 25673  iEdgciedg 25674  Edgcedga 25792   SubGraph csubgr 40491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-iota 5768  df-fun 5806  df-fv 5812  df-slot 15699  df-base 15700  df-edgf 25668  df-vtx 25675  df-iedg 25676  df-edga 25793  df-subgr 40492
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator