Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  egrsubgr Structured version   Visualization version   GIF version

Theorem egrsubgr 40501
Description: An empty graph consisting of a subset of vertices of a graph (and having no edges) is a subgraph of the graph. (Contributed by AV, 17-Nov-2020.) (Proof shortened by AV, 17-Dec-2020.)
Assertion
Ref Expression
egrsubgr (((𝐺𝑊𝑆𝑈) ∧ (Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (Fun (iEdg‘𝑆) ∧ (Edg‘𝑆) = ∅)) → 𝑆 SubGraph 𝐺)

Proof of Theorem egrsubgr
StepHypRef Expression
1 simp2 1055 . 2 (((𝐺𝑊𝑆𝑈) ∧ (Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (Fun (iEdg‘𝑆) ∧ (Edg‘𝑆) = ∅)) → (Vtx‘𝑆) ⊆ (Vtx‘𝐺))
2 eqid 2610 . . . . . . 7 (iEdg‘𝑆) = (iEdg‘𝑆)
3 eqid 2610 . . . . . . 7 (Edg‘𝑆) = (Edg‘𝑆)
42, 3edg0iedg0 25800 . . . . . 6 ((𝑆𝑈 ∧ Fun (iEdg‘𝑆)) → ((Edg‘𝑆) = ∅ ↔ (iEdg‘𝑆) = ∅))
54adantll 746 . . . . 5 (((𝐺𝑊𝑆𝑈) ∧ Fun (iEdg‘𝑆)) → ((Edg‘𝑆) = ∅ ↔ (iEdg‘𝑆) = ∅))
6 res0 5321 . . . . . . 7 ((iEdg‘𝐺) ↾ ∅) = ∅
76eqcomi 2619 . . . . . 6 ∅ = ((iEdg‘𝐺) ↾ ∅)
8 id 22 . . . . . 6 ((iEdg‘𝑆) = ∅ → (iEdg‘𝑆) = ∅)
9 dmeq 5246 . . . . . . . 8 ((iEdg‘𝑆) = ∅ → dom (iEdg‘𝑆) = dom ∅)
10 dm0 5260 . . . . . . . 8 dom ∅ = ∅
119, 10syl6eq 2660 . . . . . . 7 ((iEdg‘𝑆) = ∅ → dom (iEdg‘𝑆) = ∅)
1211reseq2d 5317 . . . . . 6 ((iEdg‘𝑆) = ∅ → ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)) = ((iEdg‘𝐺) ↾ ∅))
137, 8, 123eqtr4a 2670 . . . . 5 ((iEdg‘𝑆) = ∅ → (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)))
145, 13syl6bi 242 . . . 4 (((𝐺𝑊𝑆𝑈) ∧ Fun (iEdg‘𝑆)) → ((Edg‘𝑆) = ∅ → (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆))))
1514impr 647 . . 3 (((𝐺𝑊𝑆𝑈) ∧ (Fun (iEdg‘𝑆) ∧ (Edg‘𝑆) = ∅)) → (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)))
16153adant2 1073 . 2 (((𝐺𝑊𝑆𝑈) ∧ (Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (Fun (iEdg‘𝑆) ∧ (Edg‘𝑆) = ∅)) → (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)))
17 0ss 3924 . . . . 5 ∅ ⊆ 𝒫 (Vtx‘𝑆)
18 sseq1 3589 . . . . 5 ((Edg‘𝑆) = ∅ → ((Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆) ↔ ∅ ⊆ 𝒫 (Vtx‘𝑆)))
1917, 18mpbiri 247 . . . 4 ((Edg‘𝑆) = ∅ → (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))
2019adantl 481 . . 3 ((Fun (iEdg‘𝑆) ∧ (Edg‘𝑆) = ∅) → (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))
21203ad2ant3 1077 . 2 (((𝐺𝑊𝑆𝑈) ∧ (Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (Fun (iEdg‘𝑆) ∧ (Edg‘𝑆) = ∅)) → (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))
22 eqid 2610 . . . 4 (Vtx‘𝑆) = (Vtx‘𝑆)
23 eqid 2610 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
24 eqid 2610 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
2522, 23, 2, 24, 3issubgr 40495 . . 3 ((𝐺𝑊𝑆𝑈) → (𝑆 SubGraph 𝐺 ↔ ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))))
26253ad2ant1 1075 . 2 (((𝐺𝑊𝑆𝑈) ∧ (Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (Fun (iEdg‘𝑆) ∧ (Edg‘𝑆) = ∅)) → (𝑆 SubGraph 𝐺 ↔ ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))))
271, 16, 21, 26mpbir3and 1238 1 (((𝐺𝑊𝑆𝑈) ∧ (Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (Fun (iEdg‘𝑆) ∧ (Edg‘𝑆) = ∅)) → 𝑆 SubGraph 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wss 3540  c0 3874  𝒫 cpw 4108   class class class wbr 4583  dom cdm 5038  cres 5040  Fun wfun 5798  cfv 5804  Vtxcvtx 25673  iEdgciedg 25674  Edgcedga 25792   SubGraph csubgr 40491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-iota 5768  df-fun 5806  df-fv 5812  df-edga 25793  df-subgr 40492
This theorem is referenced by:  0uhgrsubgr  40503
  Copyright terms: Public domain W3C validator