Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xrnltled | Structured version Visualization version GIF version |
Description: 'Not less than ' implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
xrnltled.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xrnltled.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
xrnltled.3 | ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
Ref | Expression |
---|---|
xrnltled | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrnltled.3 | . 2 ⊢ (𝜑 → ¬ 𝐵 < 𝐴) | |
2 | xrnltled.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
3 | xrnltled.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
4 | xrlenlt 9982 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
5 | 2, 3, 4 | syl2anc 691 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
6 | 1, 5 | mpbird 246 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 195 ∈ wcel 1977 class class class wbr 4583 ℝ*cxr 9952 < clt 9953 ≤ cle 9954 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-br 4584 df-opab 4644 df-xp 5044 df-cnv 5046 df-le 9959 |
This theorem is referenced by: infxrlb 12036 ixxlb 12068 xrge0infssd 28916 infxrge0lb 28919 icccncfext 38773 |
Copyright terms: Public domain | W3C validator |