MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssxr Structured version   Visualization version   GIF version

Theorem ssxr 9986
Description: The three (non-exclusive) possibilities implied by a subset of extended reals. (Contributed by NM, 25-Oct-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
ssxr (𝐴 ⊆ ℝ* → (𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴))

Proof of Theorem ssxr
StepHypRef Expression
1 df-pr 4128 . . . . . . 7 {+∞, -∞} = ({+∞} ∪ {-∞})
21ineq2i 3773 . . . . . 6 (𝐴 ∩ {+∞, -∞}) = (𝐴 ∩ ({+∞} ∪ {-∞}))
3 indi 3832 . . . . . 6 (𝐴 ∩ ({+∞} ∪ {-∞})) = ((𝐴 ∩ {+∞}) ∪ (𝐴 ∩ {-∞}))
42, 3eqtri 2632 . . . . 5 (𝐴 ∩ {+∞, -∞}) = ((𝐴 ∩ {+∞}) ∪ (𝐴 ∩ {-∞}))
5 disjsn 4192 . . . . . . . 8 ((𝐴 ∩ {+∞}) = ∅ ↔ ¬ +∞ ∈ 𝐴)
6 disjsn 4192 . . . . . . . 8 ((𝐴 ∩ {-∞}) = ∅ ↔ ¬ -∞ ∈ 𝐴)
75, 6anbi12i 729 . . . . . . 7 (((𝐴 ∩ {+∞}) = ∅ ∧ (𝐴 ∩ {-∞}) = ∅) ↔ (¬ +∞ ∈ 𝐴 ∧ ¬ -∞ ∈ 𝐴))
87biimpri 217 . . . . . 6 ((¬ +∞ ∈ 𝐴 ∧ ¬ -∞ ∈ 𝐴) → ((𝐴 ∩ {+∞}) = ∅ ∧ (𝐴 ∩ {-∞}) = ∅))
9 pm4.56 515 . . . . . 6 ((¬ +∞ ∈ 𝐴 ∧ ¬ -∞ ∈ 𝐴) ↔ ¬ (+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴))
10 un00 3963 . . . . . 6 (((𝐴 ∩ {+∞}) = ∅ ∧ (𝐴 ∩ {-∞}) = ∅) ↔ ((𝐴 ∩ {+∞}) ∪ (𝐴 ∩ {-∞})) = ∅)
118, 9, 103imtr3i 279 . . . . 5 (¬ (+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) → ((𝐴 ∩ {+∞}) ∪ (𝐴 ∩ {-∞})) = ∅)
124, 11syl5eq 2656 . . . 4 (¬ (+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) → (𝐴 ∩ {+∞, -∞}) = ∅)
13 reldisj 3972 . . . . 5 (𝐴 ⊆ (ℝ ∪ {+∞, -∞}) → ((𝐴 ∩ {+∞, -∞}) = ∅ ↔ 𝐴 ⊆ ((ℝ ∪ {+∞, -∞}) ∖ {+∞, -∞})))
14 renfdisj 9977 . . . . . . . 8 (ℝ ∩ {+∞, -∞}) = ∅
15 disj3 3973 . . . . . . . 8 ((ℝ ∩ {+∞, -∞}) = ∅ ↔ ℝ = (ℝ ∖ {+∞, -∞}))
1614, 15mpbi 219 . . . . . . 7 ℝ = (ℝ ∖ {+∞, -∞})
17 difun2 4000 . . . . . . 7 ((ℝ ∪ {+∞, -∞}) ∖ {+∞, -∞}) = (ℝ ∖ {+∞, -∞})
1816, 17eqtr4i 2635 . . . . . 6 ℝ = ((ℝ ∪ {+∞, -∞}) ∖ {+∞, -∞})
1918sseq2i 3593 . . . . 5 (𝐴 ⊆ ℝ ↔ 𝐴 ⊆ ((ℝ ∪ {+∞, -∞}) ∖ {+∞, -∞}))
2013, 19syl6bbr 277 . . . 4 (𝐴 ⊆ (ℝ ∪ {+∞, -∞}) → ((𝐴 ∩ {+∞, -∞}) = ∅ ↔ 𝐴 ⊆ ℝ))
2112, 20syl5ib 233 . . 3 (𝐴 ⊆ (ℝ ∪ {+∞, -∞}) → (¬ (+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) → 𝐴 ⊆ ℝ))
2221orrd 392 . 2 (𝐴 ⊆ (ℝ ∪ {+∞, -∞}) → ((+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ∨ 𝐴 ⊆ ℝ))
23 df-xr 9957 . . 3 * = (ℝ ∪ {+∞, -∞})
2423sseq2i 3593 . 2 (𝐴 ⊆ ℝ*𝐴 ⊆ (ℝ ∪ {+∞, -∞}))
25 3orrot 1037 . . 3 ((𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ↔ (+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴𝐴 ⊆ ℝ))
26 df-3or 1032 . . 3 ((+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴𝐴 ⊆ ℝ) ↔ ((+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ∨ 𝐴 ⊆ ℝ))
2725, 26bitri 263 . 2 ((𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ↔ ((+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ∨ 𝐴 ⊆ ℝ))
2822, 24, 273imtr4i 280 1 (𝐴 ⊆ ℝ* → (𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383  w3o 1030   = wceq 1475  wcel 1977  cdif 3537  cun 3538  cin 3539  wss 3540  c0 3874  {csn 4125  {cpr 4127  cr 9814  +∞cpnf 9950  -∞cmnf 9951  *cxr 9952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957
This theorem is referenced by:  xrsupss  12011  xrinfmss  12012  xrssre  38505
  Copyright terms: Public domain W3C validator