Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunop Structured version   Visualization version   GIF version

Theorem wunop 9423
 Description: A weak universe is closed under ordered pairs. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wun0.1 (𝜑𝑈 ∈ WUni)
wunop.2 (𝜑𝐴𝑈)
wunop.3 (𝜑𝐵𝑈)
Assertion
Ref Expression
wunop (𝜑 → ⟨𝐴, 𝐵⟩ ∈ 𝑈)

Proof of Theorem wunop
StepHypRef Expression
1 wunop.2 . . 3 (𝜑𝐴𝑈)
2 wunop.3 . . 3 (𝜑𝐵𝑈)
3 dfopg 4338 . . 3 ((𝐴𝑈𝐵𝑈) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
41, 2, 3syl2anc 691 . 2 (𝜑 → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
5 wun0.1 . . 3 (𝜑𝑈 ∈ WUni)
65, 1wunsn 9417 . . 3 (𝜑 → {𝐴} ∈ 𝑈)
75, 1, 2wunpr 9410 . . 3 (𝜑 → {𝐴, 𝐵} ∈ 𝑈)
85, 6, 7wunpr 9410 . 2 (𝜑 → {{𝐴}, {𝐴, 𝐵}} ∈ 𝑈)
94, 8eqeltrd 2688 1 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ 𝑈)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475   ∈ wcel 1977  {csn 4125  {cpr 4127  ⟨cop 4131  WUnicwun 9401 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-tr 4681  df-wun 9403 This theorem is referenced by:  wunot  9424  wunress  15767  1strwunbndx  15807  catcoppccl  16581  catcfuccl  16582  catcxpccl  16670
 Copyright terms: Public domain W3C validator