MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfis Structured version   Visualization version   GIF version

Theorem wfis 5633
Description: Well-Founded Induction Schema. If all elements less than a given set 𝑥 of the well-founded class 𝐴 have a property (induction hypothesis), then all elements of 𝐴 have that property. (Contributed by Scott Fenton, 29-Jan-2011.)
Hypotheses
Ref Expression
wfis.1 𝑅 We 𝐴
wfis.2 𝑅 Se 𝐴
wfis.3 (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑𝜑))
Assertion
Ref Expression
wfis (𝑦𝐴𝜑)
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑧   𝑦,𝑅,𝑧
Allowed substitution hint:   𝜑(𝑦)

Proof of Theorem wfis
StepHypRef Expression
1 wfis.1 . . 3 𝑅 We 𝐴
2 wfis.2 . . 3 𝑅 Se 𝐴
3 wfis.3 . . . 4 (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑𝜑))
43wfisg 5632 . . 3 ((𝑅 We 𝐴𝑅 Se 𝐴) → ∀𝑦𝐴 𝜑)
51, 2, 4mp2an 704 . 2 𝑦𝐴 𝜑
65rspec 2915 1 (𝑦𝐴𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1977  wral 2896  [wsbc 3402   Se wse 4995   We wwe 4996  Predcpred 5596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-cnv 5046  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator