Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  wemoiso Structured version   Visualization version   GIF version

Theorem wemoiso 7044
 Description: Thus, there is at most one isomorphism between any two well-ordered sets. TODO: Shorten finnisoeu 8819. (Contributed by Stefan O'Rear, 12-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
wemoiso (𝑅 We 𝐴 → ∃*𝑓 𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵))
Distinct variable groups:   𝑅,𝑓   𝐴,𝑓   𝑆,𝑓   𝐵,𝑓

Proof of Theorem wemoiso
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 simpl 472 . . . . . 6 ((𝑅 We 𝐴 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝑅 We 𝐴)
2 vex 3176 . . . . . . . . 9 𝑓 ∈ V
3 isof1o 6473 . . . . . . . . . 10 (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝑓:𝐴1-1-onto𝐵)
4 f1of 6050 . . . . . . . . . 10 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴𝐵)
53, 4syl 17 . . . . . . . . 9 (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝑓:𝐴𝐵)
6 dmfex 7017 . . . . . . . . 9 ((𝑓 ∈ V ∧ 𝑓:𝐴𝐵) → 𝐴 ∈ V)
72, 5, 6sylancr 694 . . . . . . . 8 (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐴 ∈ V)
87ad2antrl 760 . . . . . . 7 ((𝑅 We 𝐴 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐴 ∈ V)
9 exse 5002 . . . . . . 7 (𝐴 ∈ V → 𝑅 Se 𝐴)
108, 9syl 17 . . . . . 6 ((𝑅 We 𝐴 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝑅 Se 𝐴)
111, 10jca 553 . . . . 5 ((𝑅 We 𝐴 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → (𝑅 We 𝐴𝑅 Se 𝐴))
12 weisoeq 6505 . . . . 5 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝑓 = 𝑔)
1311, 12sylancom 698 . . . 4 ((𝑅 We 𝐴 ∧ (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝑓 = 𝑔)
1413ex 449 . . 3 (𝑅 We 𝐴 → ((𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵)) → 𝑓 = 𝑔))
1514alrimivv 1843 . 2 (𝑅 We 𝐴 → ∀𝑓𝑔((𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵)) → 𝑓 = 𝑔))
16 isoeq1 6467 . . 3 (𝑓 = 𝑔 → (𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵)))
1716mo4 2505 . 2 (∃*𝑓 𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ ∀𝑓𝑔((𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑔 Isom 𝑅, 𝑆 (𝐴, 𝐵)) → 𝑓 = 𝑔))
1815, 17sylibr 223 1 (𝑅 We 𝐴 → ∃*𝑓 𝑓 Isom 𝑅, 𝑆 (𝐴, 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383  ∀wal 1473   ∈ wcel 1977  ∃*wmo 2459  Vcvv 3173   Se wse 4995   We wwe 4996  ⟶wf 5800  –1-1-onto→wf1o 5803   Isom wiso 5805 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813 This theorem is referenced by:  fzisoeu  38455
 Copyright terms: Public domain W3C validator