Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > vonval | Structured version Visualization version GIF version |
Description: Value of the Lebesgue measure for a given finite dimension. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
vonval.1 | ⊢ (𝜑 → 𝑋 ∈ Fin) |
Ref | Expression |
---|---|
vonval | ⊢ (𝜑 → (voln‘𝑋) = ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-voln 39429 | . . 3 ⊢ voln = (𝑥 ∈ Fin ↦ ((voln*‘𝑥) ↾ (CaraGen‘(voln*‘𝑥)))) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → voln = (𝑥 ∈ Fin ↦ ((voln*‘𝑥) ↾ (CaraGen‘(voln*‘𝑥))))) |
3 | fveq2 6103 | . . . 4 ⊢ (𝑥 = 𝑋 → (voln*‘𝑥) = (voln*‘𝑋)) | |
4 | 3 | fveq2d 6107 | . . . 4 ⊢ (𝑥 = 𝑋 → (CaraGen‘(voln*‘𝑥)) = (CaraGen‘(voln*‘𝑋))) |
5 | 3, 4 | reseq12d 5318 | . . 3 ⊢ (𝑥 = 𝑋 → ((voln*‘𝑥) ↾ (CaraGen‘(voln*‘𝑥))) = ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋)))) |
6 | 5 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ((voln*‘𝑥) ↾ (CaraGen‘(voln*‘𝑥))) = ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋)))) |
7 | vonval.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
8 | fvex 6113 | . . . 4 ⊢ (voln*‘𝑋) ∈ V | |
9 | 8 | resex 5363 | . . 3 ⊢ ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋))) ∈ V |
10 | 9 | a1i 11 | . 2 ⊢ (𝜑 → ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋))) ∈ V) |
11 | 2, 6, 7, 10 | fvmptd 6197 | 1 ⊢ (𝜑 → (voln‘𝑋) = ((voln*‘𝑋) ↾ (CaraGen‘(voln*‘𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∈ wcel 1977 Vcvv 3173 ↦ cmpt 4643 ↾ cres 5040 ‘cfv 5804 Fincfn 7841 CaraGenccaragen 39381 voln*covoln 39426 volncvoln 39428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-res 5050 df-iota 5768 df-fun 5806 df-fv 5812 df-voln 39429 |
This theorem is referenced by: vonmea 39464 dmvon 39496 voncmpl 39511 mblvon 39529 vonval2 39559 |
Copyright terms: Public domain | W3C validator |