Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unizlim | Structured version Visualization version GIF version |
Description: An ordinal equal to its own union is either zero or a limit ordinal. (Contributed by NM, 1-Oct-2003.) |
Ref | Expression |
---|---|
unizlim | ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ↔ (𝐴 = ∅ ∨ Lim 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2782 | . . . . . . 7 ⊢ (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅) | |
2 | df-lim 5645 | . . . . . . . . 9 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
3 | 2 | biimpri 217 | . . . . . . . 8 ⊢ ((Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴) → Lim 𝐴) |
4 | 3 | 3exp 1256 | . . . . . . 7 ⊢ (Ord 𝐴 → (𝐴 ≠ ∅ → (𝐴 = ∪ 𝐴 → Lim 𝐴))) |
5 | 1, 4 | syl5bir 232 | . . . . . 6 ⊢ (Ord 𝐴 → (¬ 𝐴 = ∅ → (𝐴 = ∪ 𝐴 → Lim 𝐴))) |
6 | 5 | com23 84 | . . . . 5 ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 → (¬ 𝐴 = ∅ → Lim 𝐴))) |
7 | 6 | imp 444 | . . . 4 ⊢ ((Ord 𝐴 ∧ 𝐴 = ∪ 𝐴) → (¬ 𝐴 = ∅ → Lim 𝐴)) |
8 | 7 | orrd 392 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝐴 = ∪ 𝐴) → (𝐴 = ∅ ∨ Lim 𝐴)) |
9 | 8 | ex 449 | . 2 ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 → (𝐴 = ∅ ∨ Lim 𝐴))) |
10 | uni0 4401 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
11 | 10 | eqcomi 2619 | . . . 4 ⊢ ∅ = ∪ ∅ |
12 | id 22 | . . . 4 ⊢ (𝐴 = ∅ → 𝐴 = ∅) | |
13 | unieq 4380 | . . . 4 ⊢ (𝐴 = ∅ → ∪ 𝐴 = ∪ ∅) | |
14 | 11, 12, 13 | 3eqtr4a 2670 | . . 3 ⊢ (𝐴 = ∅ → 𝐴 = ∪ 𝐴) |
15 | limuni 5702 | . . 3 ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) | |
16 | 14, 15 | jaoi 393 | . 2 ⊢ ((𝐴 = ∅ ∨ Lim 𝐴) → 𝐴 = ∪ 𝐴) |
17 | 9, 16 | impbid1 214 | 1 ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ↔ (𝐴 = ∅ ∨ Lim 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 195 ∨ wo 382 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ≠ wne 2780 ∅c0 3874 ∪ cuni 4372 Ord word 5639 Lim wlim 5641 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-v 3175 df-dif 3543 df-in 3547 df-ss 3554 df-nul 3875 df-sn 4126 df-uni 4373 df-lim 5645 |
This theorem is referenced by: ordzsl 6937 oeeulem 7568 cantnfp1lem2 8459 cantnflem1 8469 cnfcom2lem 8481 ordcmp 31616 |
Copyright terms: Public domain | W3C validator |