MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unexb Structured version   Visualization version   GIF version

Theorem unexb 6856
Description: Existence of union is equivalent to existence of its components. (Contributed by NM, 11-Jun-1998.)
Assertion
Ref Expression
unexb ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴𝐵) ∈ V)

Proof of Theorem unexb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uneq1 3722 . . . 4 (𝑥 = 𝐴 → (𝑥𝑦) = (𝐴𝑦))
21eleq1d 2672 . . 3 (𝑥 = 𝐴 → ((𝑥𝑦) ∈ V ↔ (𝐴𝑦) ∈ V))
3 uneq2 3723 . . . 4 (𝑦 = 𝐵 → (𝐴𝑦) = (𝐴𝐵))
43eleq1d 2672 . . 3 (𝑦 = 𝐵 → ((𝐴𝑦) ∈ V ↔ (𝐴𝐵) ∈ V))
5 vex 3176 . . . 4 𝑥 ∈ V
6 vex 3176 . . . 4 𝑦 ∈ V
75, 6unex 6854 . . 3 (𝑥𝑦) ∈ V
82, 4, 7vtocl2g 3243 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵) ∈ V)
9 ssun1 3738 . . . 4 𝐴 ⊆ (𝐴𝐵)
10 ssexg 4732 . . . 4 ((𝐴 ⊆ (𝐴𝐵) ∧ (𝐴𝐵) ∈ V) → 𝐴 ∈ V)
119, 10mpan 702 . . 3 ((𝐴𝐵) ∈ V → 𝐴 ∈ V)
12 ssun2 3739 . . . 4 𝐵 ⊆ (𝐴𝐵)
13 ssexg 4732 . . . 4 ((𝐵 ⊆ (𝐴𝐵) ∧ (𝐴𝐵) ∈ V) → 𝐵 ∈ V)
1412, 13mpan 702 . . 3 ((𝐴𝐵) ∈ V → 𝐵 ∈ V)
1511, 14jca 553 . 2 ((𝐴𝐵) ∈ V → (𝐴 ∈ V ∧ 𝐵 ∈ V))
168, 15impbii 198 1 ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  cun 3538  wss 3540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rex 2902  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-sn 4126  df-pr 4128  df-uni 4373
This theorem is referenced by:  unexg  6857  sucexb  6901  fodomr  7996  fsuppun  8177  fsuppunbi  8179  cdaval  8875  bj-tagex  32168
  Copyright terms: Public domain W3C validator