MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txindislem Structured version   Visualization version   GIF version

Theorem txindislem 21246
Description: Lemma for txindis 21247. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
txindislem (( I ‘𝐴) × ( I ‘𝐵)) = ( I ‘(𝐴 × 𝐵))

Proof of Theorem txindislem
StepHypRef Expression
1 0xp 5122 . . 3 (∅ × ( I ‘𝐵)) = ∅
2 fvprc 6097 . . . 4 𝐴 ∈ V → ( I ‘𝐴) = ∅)
32xpeq1d 5062 . . 3 𝐴 ∈ V → (( I ‘𝐴) × ( I ‘𝐵)) = (∅ × ( I ‘𝐵)))
4 simpr 476 . . . . . . . 8 ((¬ 𝐴 ∈ V ∧ 𝐵 = ∅) → 𝐵 = ∅)
54xpeq2d 5063 . . . . . . 7 ((¬ 𝐴 ∈ V ∧ 𝐵 = ∅) → (𝐴 × 𝐵) = (𝐴 × ∅))
6 xp0 5471 . . . . . . 7 (𝐴 × ∅) = ∅
75, 6syl6eq 2660 . . . . . 6 ((¬ 𝐴 ∈ V ∧ 𝐵 = ∅) → (𝐴 × 𝐵) = ∅)
87fveq2d 6107 . . . . 5 ((¬ 𝐴 ∈ V ∧ 𝐵 = ∅) → ( I ‘(𝐴 × 𝐵)) = ( I ‘∅))
9 0ex 4718 . . . . . 6 ∅ ∈ V
10 fvi 6165 . . . . . 6 (∅ ∈ V → ( I ‘∅) = ∅)
119, 10ax-mp 5 . . . . 5 ( I ‘∅) = ∅
128, 11syl6eq 2660 . . . 4 ((¬ 𝐴 ∈ V ∧ 𝐵 = ∅) → ( I ‘(𝐴 × 𝐵)) = ∅)
13 dmexg 6989 . . . . . . . 8 ((𝐴 × 𝐵) ∈ V → dom (𝐴 × 𝐵) ∈ V)
14 dmxp 5265 . . . . . . . . 9 (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴)
1514eleq1d 2672 . . . . . . . 8 (𝐵 ≠ ∅ → (dom (𝐴 × 𝐵) ∈ V ↔ 𝐴 ∈ V))
1613, 15syl5ib 233 . . . . . . 7 (𝐵 ≠ ∅ → ((𝐴 × 𝐵) ∈ V → 𝐴 ∈ V))
1716con3d 147 . . . . . 6 (𝐵 ≠ ∅ → (¬ 𝐴 ∈ V → ¬ (𝐴 × 𝐵) ∈ V))
1817impcom 445 . . . . 5 ((¬ 𝐴 ∈ V ∧ 𝐵 ≠ ∅) → ¬ (𝐴 × 𝐵) ∈ V)
19 fvprc 6097 . . . . 5 (¬ (𝐴 × 𝐵) ∈ V → ( I ‘(𝐴 × 𝐵)) = ∅)
2018, 19syl 17 . . . 4 ((¬ 𝐴 ∈ V ∧ 𝐵 ≠ ∅) → ( I ‘(𝐴 × 𝐵)) = ∅)
2112, 20pm2.61dane 2869 . . 3 𝐴 ∈ V → ( I ‘(𝐴 × 𝐵)) = ∅)
221, 3, 213eqtr4a 2670 . 2 𝐴 ∈ V → (( I ‘𝐴) × ( I ‘𝐵)) = ( I ‘(𝐴 × 𝐵)))
23 xp0 5471 . . 3 (( I ‘𝐴) × ∅) = ∅
24 fvprc 6097 . . . 4 𝐵 ∈ V → ( I ‘𝐵) = ∅)
2524xpeq2d 5063 . . 3 𝐵 ∈ V → (( I ‘𝐴) × ( I ‘𝐵)) = (( I ‘𝐴) × ∅))
26 simpr 476 . . . . . . . 8 ((¬ 𝐵 ∈ V ∧ 𝐴 = ∅) → 𝐴 = ∅)
2726xpeq1d 5062 . . . . . . 7 ((¬ 𝐵 ∈ V ∧ 𝐴 = ∅) → (𝐴 × 𝐵) = (∅ × 𝐵))
28 0xp 5122 . . . . . . 7 (∅ × 𝐵) = ∅
2927, 28syl6eq 2660 . . . . . 6 ((¬ 𝐵 ∈ V ∧ 𝐴 = ∅) → (𝐴 × 𝐵) = ∅)
3029fveq2d 6107 . . . . 5 ((¬ 𝐵 ∈ V ∧ 𝐴 = ∅) → ( I ‘(𝐴 × 𝐵)) = ( I ‘∅))
3130, 11syl6eq 2660 . . . 4 ((¬ 𝐵 ∈ V ∧ 𝐴 = ∅) → ( I ‘(𝐴 × 𝐵)) = ∅)
32 rnexg 6990 . . . . . . . 8 ((𝐴 × 𝐵) ∈ V → ran (𝐴 × 𝐵) ∈ V)
33 rnxp 5483 . . . . . . . . 9 (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵)
3433eleq1d 2672 . . . . . . . 8 (𝐴 ≠ ∅ → (ran (𝐴 × 𝐵) ∈ V ↔ 𝐵 ∈ V))
3532, 34syl5ib 233 . . . . . . 7 (𝐴 ≠ ∅ → ((𝐴 × 𝐵) ∈ V → 𝐵 ∈ V))
3635con3d 147 . . . . . 6 (𝐴 ≠ ∅ → (¬ 𝐵 ∈ V → ¬ (𝐴 × 𝐵) ∈ V))
3736impcom 445 . . . . 5 ((¬ 𝐵 ∈ V ∧ 𝐴 ≠ ∅) → ¬ (𝐴 × 𝐵) ∈ V)
3837, 19syl 17 . . . 4 ((¬ 𝐵 ∈ V ∧ 𝐴 ≠ ∅) → ( I ‘(𝐴 × 𝐵)) = ∅)
3931, 38pm2.61dane 2869 . . 3 𝐵 ∈ V → ( I ‘(𝐴 × 𝐵)) = ∅)
4023, 25, 393eqtr4a 2670 . 2 𝐵 ∈ V → (( I ‘𝐴) × ( I ‘𝐵)) = ( I ‘(𝐴 × 𝐵)))
41 fvi 6165 . . . 4 (𝐴 ∈ V → ( I ‘𝐴) = 𝐴)
42 fvi 6165 . . . 4 (𝐵 ∈ V → ( I ‘𝐵) = 𝐵)
43 xpeq12 5058 . . . 4 ((( I ‘𝐴) = 𝐴 ∧ ( I ‘𝐵) = 𝐵) → (( I ‘𝐴) × ( I ‘𝐵)) = (𝐴 × 𝐵))
4441, 42, 43syl2an 493 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (( I ‘𝐴) × ( I ‘𝐵)) = (𝐴 × 𝐵))
45 xpexg 6858 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 × 𝐵) ∈ V)
46 fvi 6165 . . . 4 ((𝐴 × 𝐵) ∈ V → ( I ‘(𝐴 × 𝐵)) = (𝐴 × 𝐵))
4745, 46syl 17 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ( I ‘(𝐴 × 𝐵)) = (𝐴 × 𝐵))
4844, 47eqtr4d 2647 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (( I ‘𝐴) × ( I ‘𝐵)) = ( I ‘(𝐴 × 𝐵)))
4922, 40, 48ecase 980 1 (( I ‘𝐴) × ( I ‘𝐵)) = ( I ‘(𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 383   = wceq 1475  wcel 1977  wne 2780  Vcvv 3173  c0 3874   I cid 4948   × cxp 5036  dom cdm 5038  ran crn 5039  cfv 5804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fv 5812
This theorem is referenced by:  txindis  21247
  Copyright terms: Public domain W3C validator