MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txindis Structured version   Visualization version   GIF version

Theorem txindis 21247
Description: The topological product of indiscrete spaces is indiscrete. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
txindis ({∅, 𝐴} ×t {∅, 𝐵}) = {∅, (𝐴 × 𝐵)}

Proof of Theorem txindis
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neq0 3889 . . . . . . 7 𝑥 = ∅ ↔ ∃𝑦 𝑦𝑥)
2 indistop 20616 . . . . . . . . . . 11 {∅, 𝐴} ∈ Top
3 indistop 20616 . . . . . . . . . . 11 {∅, 𝐵} ∈ Top
4 eltx 21181 . . . . . . . . . . 11 (({∅, 𝐴} ∈ Top ∧ {∅, 𝐵} ∈ Top) → (𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) ↔ ∀𝑦𝑥𝑧 ∈ {∅, 𝐴}∃𝑤 ∈ {∅, 𝐵} (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)))
52, 3, 4mp2an 704 . . . . . . . . . 10 (𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) ↔ ∀𝑦𝑥𝑧 ∈ {∅, 𝐴}∃𝑤 ∈ {∅, 𝐵} (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥))
6 rsp 2913 . . . . . . . . . 10 (∀𝑦𝑥𝑧 ∈ {∅, 𝐴}∃𝑤 ∈ {∅, 𝐵} (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥) → (𝑦𝑥 → ∃𝑧 ∈ {∅, 𝐴}∃𝑤 ∈ {∅, 𝐵} (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)))
75, 6sylbi 206 . . . . . . . . 9 (𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) → (𝑦𝑥 → ∃𝑧 ∈ {∅, 𝐴}∃𝑤 ∈ {∅, 𝐵} (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)))
8 elssuni 4403 . . . . . . . . . . . . . 14 (𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) → 𝑥 ({∅, 𝐴} ×t {∅, 𝐵}))
9 indisuni 20617 . . . . . . . . . . . . . . 15 ( I ‘𝐴) = {∅, 𝐴}
10 indisuni 20617 . . . . . . . . . . . . . . 15 ( I ‘𝐵) = {∅, 𝐵}
112, 3, 9, 10txunii 21206 . . . . . . . . . . . . . 14 (( I ‘𝐴) × ( I ‘𝐵)) = ({∅, 𝐴} ×t {∅, 𝐵})
128, 11syl6sseqr 3615 . . . . . . . . . . . . 13 (𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) → 𝑥 ⊆ (( I ‘𝐴) × ( I ‘𝐵)))
1312ad2antrr 758 . . . . . . . . . . . 12 (((𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) ∧ (𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵})) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑥 ⊆ (( I ‘𝐴) × ( I ‘𝐵)))
14 ne0i 3880 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝑧 × 𝑤) → (𝑧 × 𝑤) ≠ ∅)
1514ad2antrl 760 . . . . . . . . . . . . . . . . . . 19 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (𝑧 × 𝑤) ≠ ∅)
16 xpnz 5472 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ≠ ∅ ∧ 𝑤 ≠ ∅) ↔ (𝑧 × 𝑤) ≠ ∅)
1715, 16sylibr 223 . . . . . . . . . . . . . . . . . 18 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (𝑧 ≠ ∅ ∧ 𝑤 ≠ ∅))
1817simpld 474 . . . . . . . . . . . . . . . . 17 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑧 ≠ ∅)
1918neneqd 2787 . . . . . . . . . . . . . . . 16 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → ¬ 𝑧 = ∅)
20 simpll 786 . . . . . . . . . . . . . . . . . . 19 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑧 ∈ {∅, 𝐴})
21 indislem 20614 . . . . . . . . . . . . . . . . . . 19 {∅, ( I ‘𝐴)} = {∅, 𝐴}
2220, 21syl6eleqr 2699 . . . . . . . . . . . . . . . . . 18 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑧 ∈ {∅, ( I ‘𝐴)})
23 elpri 4145 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ {∅, ( I ‘𝐴)} → (𝑧 = ∅ ∨ 𝑧 = ( I ‘𝐴)))
2422, 23syl 17 . . . . . . . . . . . . . . . . 17 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (𝑧 = ∅ ∨ 𝑧 = ( I ‘𝐴)))
2524ord 391 . . . . . . . . . . . . . . . 16 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (¬ 𝑧 = ∅ → 𝑧 = ( I ‘𝐴)))
2619, 25mpd 15 . . . . . . . . . . . . . . 15 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑧 = ( I ‘𝐴))
2717simprd 478 . . . . . . . . . . . . . . . . 17 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑤 ≠ ∅)
2827neneqd 2787 . . . . . . . . . . . . . . . 16 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → ¬ 𝑤 = ∅)
29 simplr 788 . . . . . . . . . . . . . . . . . . 19 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑤 ∈ {∅, 𝐵})
30 indislem 20614 . . . . . . . . . . . . . . . . . . 19 {∅, ( I ‘𝐵)} = {∅, 𝐵}
3129, 30syl6eleqr 2699 . . . . . . . . . . . . . . . . . 18 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑤 ∈ {∅, ( I ‘𝐵)})
32 elpri 4145 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ {∅, ( I ‘𝐵)} → (𝑤 = ∅ ∨ 𝑤 = ( I ‘𝐵)))
3331, 32syl 17 . . . . . . . . . . . . . . . . 17 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (𝑤 = ∅ ∨ 𝑤 = ( I ‘𝐵)))
3433ord 391 . . . . . . . . . . . . . . . 16 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (¬ 𝑤 = ∅ → 𝑤 = ( I ‘𝐵)))
3528, 34mpd 15 . . . . . . . . . . . . . . 15 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑤 = ( I ‘𝐵))
3626, 35xpeq12d 5064 . . . . . . . . . . . . . 14 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (𝑧 × 𝑤) = (( I ‘𝐴) × ( I ‘𝐵)))
37 simprr 792 . . . . . . . . . . . . . 14 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (𝑧 × 𝑤) ⊆ 𝑥)
3836, 37eqsstr3d 3603 . . . . . . . . . . . . 13 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (( I ‘𝐴) × ( I ‘𝐵)) ⊆ 𝑥)
3938adantll 746 . . . . . . . . . . . 12 (((𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) ∧ (𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵})) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (( I ‘𝐴) × ( I ‘𝐵)) ⊆ 𝑥)
4013, 39eqssd 3585 . . . . . . . . . . 11 (((𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) ∧ (𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵})) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑥 = (( I ‘𝐴) × ( I ‘𝐵)))
4140ex 449 . . . . . . . . . 10 ((𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) ∧ (𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵})) → ((𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥) → 𝑥 = (( I ‘𝐴) × ( I ‘𝐵))))
4241rexlimdvva 3020 . . . . . . . . 9 (𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) → (∃𝑧 ∈ {∅, 𝐴}∃𝑤 ∈ {∅, 𝐵} (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥) → 𝑥 = (( I ‘𝐴) × ( I ‘𝐵))))
437, 42syld 46 . . . . . . . 8 (𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) → (𝑦𝑥𝑥 = (( I ‘𝐴) × ( I ‘𝐵))))
4443exlimdv 1848 . . . . . . 7 (𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) → (∃𝑦 𝑦𝑥𝑥 = (( I ‘𝐴) × ( I ‘𝐵))))
451, 44syl5bi 231 . . . . . 6 (𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) → (¬ 𝑥 = ∅ → 𝑥 = (( I ‘𝐴) × ( I ‘𝐵))))
4645orrd 392 . . . . 5 (𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) → (𝑥 = ∅ ∨ 𝑥 = (( I ‘𝐴) × ( I ‘𝐵))))
47 vex 3176 . . . . . 6 𝑥 ∈ V
4847elpr 4146 . . . . 5 (𝑥 ∈ {∅, (( I ‘𝐴) × ( I ‘𝐵))} ↔ (𝑥 = ∅ ∨ 𝑥 = (( I ‘𝐴) × ( I ‘𝐵))))
4946, 48sylibr 223 . . . 4 (𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) → 𝑥 ∈ {∅, (( I ‘𝐴) × ( I ‘𝐵))})
5049ssriv 3572 . . 3 ({∅, 𝐴} ×t {∅, 𝐵}) ⊆ {∅, (( I ‘𝐴) × ( I ‘𝐵))}
519toptopon 20548 . . . . . . 7 ({∅, 𝐴} ∈ Top ↔ {∅, 𝐴} ∈ (TopOn‘( I ‘𝐴)))
522, 51mpbi 219 . . . . . 6 {∅, 𝐴} ∈ (TopOn‘( I ‘𝐴))
5310toptopon 20548 . . . . . . 7 ({∅, 𝐵} ∈ Top ↔ {∅, 𝐵} ∈ (TopOn‘( I ‘𝐵)))
543, 53mpbi 219 . . . . . 6 {∅, 𝐵} ∈ (TopOn‘( I ‘𝐵))
55 txtopon 21204 . . . . . 6 (({∅, 𝐴} ∈ (TopOn‘( I ‘𝐴)) ∧ {∅, 𝐵} ∈ (TopOn‘( I ‘𝐵))) → ({∅, 𝐴} ×t {∅, 𝐵}) ∈ (TopOn‘(( I ‘𝐴) × ( I ‘𝐵))))
5652, 54, 55mp2an 704 . . . . 5 ({∅, 𝐴} ×t {∅, 𝐵}) ∈ (TopOn‘(( I ‘𝐴) × ( I ‘𝐵)))
57 topgele 20549 . . . . 5 (({∅, 𝐴} ×t {∅, 𝐵}) ∈ (TopOn‘(( I ‘𝐴) × ( I ‘𝐵))) → ({∅, (( I ‘𝐴) × ( I ‘𝐵))} ⊆ ({∅, 𝐴} ×t {∅, 𝐵}) ∧ ({∅, 𝐴} ×t {∅, 𝐵}) ⊆ 𝒫 (( I ‘𝐴) × ( I ‘𝐵))))
5856, 57ax-mp 5 . . . 4 ({∅, (( I ‘𝐴) × ( I ‘𝐵))} ⊆ ({∅, 𝐴} ×t {∅, 𝐵}) ∧ ({∅, 𝐴} ×t {∅, 𝐵}) ⊆ 𝒫 (( I ‘𝐴) × ( I ‘𝐵)))
5958simpli 473 . . 3 {∅, (( I ‘𝐴) × ( I ‘𝐵))} ⊆ ({∅, 𝐴} ×t {∅, 𝐵})
6050, 59eqssi 3584 . 2 ({∅, 𝐴} ×t {∅, 𝐵}) = {∅, (( I ‘𝐴) × ( I ‘𝐵))}
61 txindislem 21246 . . 3 (( I ‘𝐴) × ( I ‘𝐵)) = ( I ‘(𝐴 × 𝐵))
6261preq2i 4216 . 2 {∅, (( I ‘𝐴) × ( I ‘𝐵))} = {∅, ( I ‘(𝐴 × 𝐵))}
63 indislem 20614 . 2 {∅, ( I ‘(𝐴 × 𝐵))} = {∅, (𝐴 × 𝐵)}
6460, 62, 633eqtri 2636 1 ({∅, 𝐴} ×t {∅, 𝐵}) = {∅, (𝐴 × 𝐵)}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wex 1695  wcel 1977  wne 2780  wral 2896  wrex 2897  wss 3540  c0 3874  𝒫 cpw 4108  {cpr 4127   cuni 4372   I cid 4948   × cxp 5036  cfv 5804  (class class class)co 6549  Topctop 20517  TopOnctopon 20518   ×t ctx 21173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-topgen 15927  df-top 20521  df-bases 20522  df-topon 20523  df-tx 21175
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator