MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsrps Structured version   Visualization version   GIF version

Theorem tsrps 17044
Description: A toset is a poset. (Contributed by Mario Carneiro, 9-Sep-2015.)
Assertion
Ref Expression
tsrps (𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel)

Proof of Theorem tsrps
StepHypRef Expression
1 eqid 2610 . . 3 dom 𝑅 = dom 𝑅
21istsr 17040 . 2 (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ (dom 𝑅 × dom 𝑅) ⊆ (𝑅𝑅)))
32simplbi 475 1 (𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1977  cun 3538  wss 3540   × cxp 5036  ccnv 5037  dom cdm 5038  PosetRelcps 17021   TosetRel ctsr 17022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-xp 5044  df-cnv 5046  df-dm 5048  df-tsr 17024
This theorem is referenced by:  cnvtsr  17045  tsrdir  17061  ordtbas2  20805  ordtrest2lem  20817  ordtrest2  20818  ordthauslem  20997  icopnfhmeo  22550  iccpnfhmeo  22552  xrhmeo  22553  cnvordtrestixx  29287  xrge0iifhmeo  29310
  Copyright terms: Public domain W3C validator