Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tsrps | Structured version Visualization version GIF version |
Description: A toset is a poset. (Contributed by Mario Carneiro, 9-Sep-2015.) |
Ref | Expression |
---|---|
tsrps | ⊢ (𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2610 | . . 3 ⊢ dom 𝑅 = dom 𝑅 | |
2 | 1 | istsr 17040 | . 2 ⊢ (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ (dom 𝑅 × dom 𝑅) ⊆ (𝑅 ∪ ◡𝑅))) |
3 | 2 | simplbi 475 | 1 ⊢ (𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1977 ∪ cun 3538 ⊆ wss 3540 × cxp 5036 ◡ccnv 5037 dom cdm 5038 PosetRelcps 17021 TosetRel ctsr 17022 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-br 4584 df-opab 4644 df-xp 5044 df-cnv 5046 df-dm 5048 df-tsr 17024 |
This theorem is referenced by: cnvtsr 17045 tsrdir 17061 ordtbas2 20805 ordtrest2lem 20817 ordtrest2 20818 ordthauslem 20997 icopnfhmeo 22550 iccpnfhmeo 22552 xrhmeo 22553 cnvordtrestixx 29287 xrge0iifhmeo 29310 |
Copyright terms: Public domain | W3C validator |