MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtrest2lem Structured version   Visualization version   GIF version

Theorem ordtrest2lem 20817
Description: Lemma for ordtrest2 20818. (Contributed by Mario Carneiro, 9-Sep-2015.)
Hypotheses
Ref Expression
ordtrest2.1 𝑋 = dom 𝑅
ordtrest2.2 (𝜑𝑅 ∈ TosetRel )
ordtrest2.3 (𝜑𝐴𝑋)
ordtrest2.4 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → {𝑧𝑋 ∣ (𝑥𝑅𝑧𝑧𝑅𝑦)} ⊆ 𝐴)
Assertion
Ref Expression
ordtrest2lem (𝜑 → ∀𝑣 ∈ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧})(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
Distinct variable groups:   𝑤,𝑣,𝑥,𝑦,𝑧,𝐴   𝜑,𝑣,𝑤,𝑥,𝑦,𝑧   𝑣,𝑅,𝑤,𝑥,𝑦,𝑧   𝑣,𝑋,𝑤,𝑥,𝑦,𝑧

Proof of Theorem ordtrest2lem
StepHypRef Expression
1 inrab2 3859 . . . . 5 ({𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧} ∩ 𝐴) = {𝑤 ∈ (𝑋𝐴) ∣ ¬ 𝑤𝑅𝑧}
2 ordtrest2.3 . . . . . . . 8 (𝜑𝐴𝑋)
3 sseqin2 3779 . . . . . . . 8 (𝐴𝑋 ↔ (𝑋𝐴) = 𝐴)
42, 3sylib 207 . . . . . . 7 (𝜑 → (𝑋𝐴) = 𝐴)
54adantr 480 . . . . . 6 ((𝜑𝑧𝑋) → (𝑋𝐴) = 𝐴)
6 rabeq 3166 . . . . . 6 ((𝑋𝐴) = 𝐴 → {𝑤 ∈ (𝑋𝐴) ∣ ¬ 𝑤𝑅𝑧} = {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧})
75, 6syl 17 . . . . 5 ((𝜑𝑧𝑋) → {𝑤 ∈ (𝑋𝐴) ∣ ¬ 𝑤𝑅𝑧} = {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧})
81, 7syl5eq 2656 . . . 4 ((𝜑𝑧𝑋) → ({𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧} ∩ 𝐴) = {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧})
9 ordtrest2.2 . . . . . . . . . . 11 (𝜑𝑅 ∈ TosetRel )
10 inex1g 4729 . . . . . . . . . . 11 (𝑅 ∈ TosetRel → (𝑅 ∩ (𝐴 × 𝐴)) ∈ V)
119, 10syl 17 . . . . . . . . . 10 (𝜑 → (𝑅 ∩ (𝐴 × 𝐴)) ∈ V)
12 eqid 2610 . . . . . . . . . . 11 dom (𝑅 ∩ (𝐴 × 𝐴)) = dom (𝑅 ∩ (𝐴 × 𝐴))
1312ordttopon 20807 . . . . . . . . . 10 ((𝑅 ∩ (𝐴 × 𝐴)) ∈ V → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ (TopOn‘dom (𝑅 ∩ (𝐴 × 𝐴))))
1411, 13syl 17 . . . . . . . . 9 (𝜑 → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ (TopOn‘dom (𝑅 ∩ (𝐴 × 𝐴))))
15 tsrps 17044 . . . . . . . . . . . 12 (𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel)
169, 15syl 17 . . . . . . . . . . 11 (𝜑𝑅 ∈ PosetRel)
17 ordtrest2.1 . . . . . . . . . . . 12 𝑋 = dom 𝑅
1817psssdm 17039 . . . . . . . . . . 11 ((𝑅 ∈ PosetRel ∧ 𝐴𝑋) → dom (𝑅 ∩ (𝐴 × 𝐴)) = 𝐴)
1916, 2, 18syl2anc 691 . . . . . . . . . 10 (𝜑 → dom (𝑅 ∩ (𝐴 × 𝐴)) = 𝐴)
2019fveq2d 6107 . . . . . . . . 9 (𝜑 → (TopOn‘dom (𝑅 ∩ (𝐴 × 𝐴))) = (TopOn‘𝐴))
2114, 20eleqtrd 2690 . . . . . . . 8 (𝜑 → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ (TopOn‘𝐴))
22 toponmax 20543 . . . . . . . 8 ((ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ (TopOn‘𝐴) → 𝐴 ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
2321, 22syl 17 . . . . . . 7 (𝜑𝐴 ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
2423adantr 480 . . . . . 6 ((𝜑𝑧𝑋) → 𝐴 ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
25 rabid2 3096 . . . . . . 7 (𝐴 = {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ↔ ∀𝑤𝐴 ¬ 𝑤𝑅𝑧)
26 eleq1 2676 . . . . . . 7 (𝐴 = {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} → (𝐴 ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
2725, 26sylbir 224 . . . . . 6 (∀𝑤𝐴 ¬ 𝑤𝑅𝑧 → (𝐴 ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
2824, 27syl5ibcom 234 . . . . 5 ((𝜑𝑧𝑋) → (∀𝑤𝐴 ¬ 𝑤𝑅𝑧 → {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
29 dfrex2 2979 . . . . . . 7 (∃𝑤𝐴 𝑤𝑅𝑧 ↔ ¬ ∀𝑤𝐴 ¬ 𝑤𝑅𝑧)
30 breq1 4586 . . . . . . . 8 (𝑤 = 𝑥 → (𝑤𝑅𝑧𝑥𝑅𝑧))
3130cbvrexv 3148 . . . . . . 7 (∃𝑤𝐴 𝑤𝑅𝑧 ↔ ∃𝑥𝐴 𝑥𝑅𝑧)
3229, 31bitr3i 265 . . . . . 6 (¬ ∀𝑤𝐴 ¬ 𝑤𝑅𝑧 ↔ ∃𝑥𝐴 𝑥𝑅𝑧)
33 ordttop 20814 . . . . . . . . . . . . 13 ((𝑅 ∩ (𝐴 × 𝐴)) ∈ V → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ Top)
3411, 33syl 17 . . . . . . . . . . . 12 (𝜑 → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ Top)
3534adantr 480 . . . . . . . . . . 11 ((𝜑𝑧𝑋) → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ Top)
36 0opn 20534 . . . . . . . . . . 11 ((ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ Top → ∅ ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
3735, 36syl 17 . . . . . . . . . 10 ((𝜑𝑧𝑋) → ∅ ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
3837adantr 480 . . . . . . . . 9 (((𝜑𝑧𝑋) ∧ (𝑥𝐴𝑥𝑅𝑧)) → ∅ ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
39 eleq1 2676 . . . . . . . . 9 ({𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} = ∅ → ({𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ ∅ ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
4038, 39syl5ibrcom 236 . . . . . . . 8 (((𝜑𝑧𝑋) ∧ (𝑥𝐴𝑥𝑅𝑧)) → ({𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} = ∅ → {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
41 rabn0 3912 . . . . . . . . . 10 ({𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ≠ ∅ ↔ ∃𝑤𝐴 ¬ 𝑤𝑅𝑧)
42 breq1 4586 . . . . . . . . . . . 12 (𝑤 = 𝑦 → (𝑤𝑅𝑧𝑦𝑅𝑧))
4342notbid 307 . . . . . . . . . . 11 (𝑤 = 𝑦 → (¬ 𝑤𝑅𝑧 ↔ ¬ 𝑦𝑅𝑧))
4443cbvrexv 3148 . . . . . . . . . 10 (∃𝑤𝐴 ¬ 𝑤𝑅𝑧 ↔ ∃𝑦𝐴 ¬ 𝑦𝑅𝑧)
4541, 44bitri 263 . . . . . . . . 9 ({𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ≠ ∅ ↔ ∃𝑦𝐴 ¬ 𝑦𝑅𝑧)
469ad3antrrr 762 . . . . . . . . . . . . 13 ((((𝜑𝑧𝑋) ∧ (𝑥𝐴𝑥𝑅𝑧)) ∧ 𝑦𝐴) → 𝑅 ∈ TosetRel )
472ad2antrr 758 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑋) ∧ (𝑥𝐴𝑥𝑅𝑧)) → 𝐴𝑋)
4847sselda 3568 . . . . . . . . . . . . 13 ((((𝜑𝑧𝑋) ∧ (𝑥𝐴𝑥𝑅𝑧)) ∧ 𝑦𝐴) → 𝑦𝑋)
49 simpllr 795 . . . . . . . . . . . . 13 ((((𝜑𝑧𝑋) ∧ (𝑥𝐴𝑥𝑅𝑧)) ∧ 𝑦𝐴) → 𝑧𝑋)
5017tsrlin 17042 . . . . . . . . . . . . 13 ((𝑅 ∈ TosetRel ∧ 𝑦𝑋𝑧𝑋) → (𝑦𝑅𝑧𝑧𝑅𝑦))
5146, 48, 49, 50syl3anc 1318 . . . . . . . . . . . 12 ((((𝜑𝑧𝑋) ∧ (𝑥𝐴𝑥𝑅𝑧)) ∧ 𝑦𝐴) → (𝑦𝑅𝑧𝑧𝑅𝑦))
5251ord 391 . . . . . . . . . . 11 ((((𝜑𝑧𝑋) ∧ (𝑥𝐴𝑥𝑅𝑧)) ∧ 𝑦𝐴) → (¬ 𝑦𝑅𝑧𝑧𝑅𝑦))
53 an4 861 . . . . . . . . . . . . . . . . 17 (((𝑥𝐴𝑥𝑅𝑧) ∧ (𝑦𝐴𝑧𝑅𝑦)) ↔ ((𝑥𝐴𝑦𝐴) ∧ (𝑥𝑅𝑧𝑧𝑅𝑦)))
54 ordtrest2.4 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → {𝑧𝑋 ∣ (𝑥𝑅𝑧𝑧𝑅𝑦)} ⊆ 𝐴)
55 rabss 3642 . . . . . . . . . . . . . . . . . . . . 21 ({𝑧𝑋 ∣ (𝑥𝑅𝑧𝑧𝑅𝑦)} ⊆ 𝐴 ↔ ∀𝑧𝑋 ((𝑥𝑅𝑧𝑧𝑅𝑦) → 𝑧𝐴))
5654, 55sylib 207 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → ∀𝑧𝑋 ((𝑥𝑅𝑧𝑧𝑅𝑦) → 𝑧𝐴))
5756r19.21bi 2916 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑧𝑋) → ((𝑥𝑅𝑧𝑧𝑅𝑦) → 𝑧𝐴))
5857an32s 842 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑋) ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥𝑅𝑧𝑧𝑅𝑦) → 𝑧𝐴))
5958impr 647 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑋) ∧ ((𝑥𝐴𝑦𝐴) ∧ (𝑥𝑅𝑧𝑧𝑅𝑦))) → 𝑧𝐴)
6053, 59sylan2b 491 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑋) ∧ ((𝑥𝐴𝑥𝑅𝑧) ∧ (𝑦𝐴𝑧𝑅𝑦))) → 𝑧𝐴)
61 brinxp 5104 . . . . . . . . . . . . . . . . . . 19 ((𝑤𝐴𝑧𝐴) → (𝑤𝑅𝑧𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧))
6261ancoms 468 . . . . . . . . . . . . . . . . . 18 ((𝑧𝐴𝑤𝐴) → (𝑤𝑅𝑧𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧))
6362notbid 307 . . . . . . . . . . . . . . . . 17 ((𝑧𝐴𝑤𝐴) → (¬ 𝑤𝑅𝑧 ↔ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧))
6463rabbidva 3163 . . . . . . . . . . . . . . . 16 (𝑧𝐴 → {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} = {𝑤𝐴 ∣ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧})
6560, 64syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑋) ∧ ((𝑥𝐴𝑥𝑅𝑧) ∧ (𝑦𝐴𝑧𝑅𝑦))) → {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} = {𝑤𝐴 ∣ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧})
6619ad2antrr 758 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑋) ∧ ((𝑥𝐴𝑥𝑅𝑧) ∧ (𝑦𝐴𝑧𝑅𝑦))) → dom (𝑅 ∩ (𝐴 × 𝐴)) = 𝐴)
67 rabeq 3166 . . . . . . . . . . . . . . . 16 (dom (𝑅 ∩ (𝐴 × 𝐴)) = 𝐴 → {𝑤 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧} = {𝑤𝐴 ∣ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧})
6866, 67syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑋) ∧ ((𝑥𝐴𝑥𝑅𝑧) ∧ (𝑦𝐴𝑧𝑅𝑦))) → {𝑤 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧} = {𝑤𝐴 ∣ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧})
6965, 68eqtr4d 2647 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑋) ∧ ((𝑥𝐴𝑥𝑅𝑧) ∧ (𝑦𝐴𝑧𝑅𝑦))) → {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} = {𝑤 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧})
7011ad2antrr 758 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑋) ∧ ((𝑥𝐴𝑥𝑅𝑧) ∧ (𝑦𝐴𝑧𝑅𝑦))) → (𝑅 ∩ (𝐴 × 𝐴)) ∈ V)
7160, 66eleqtrrd 2691 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑋) ∧ ((𝑥𝐴𝑥𝑅𝑧) ∧ (𝑦𝐴𝑧𝑅𝑦))) → 𝑧 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)))
7212ordtopn1 20808 . . . . . . . . . . . . . . 15 (((𝑅 ∩ (𝐴 × 𝐴)) ∈ V ∧ 𝑧 ∈ dom (𝑅 ∩ (𝐴 × 𝐴))) → {𝑤 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
7370, 71, 72syl2anc 691 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑋) ∧ ((𝑥𝐴𝑥𝑅𝑧) ∧ (𝑦𝐴𝑧𝑅𝑦))) → {𝑤 ∈ dom (𝑅 ∩ (𝐴 × 𝐴)) ∣ ¬ 𝑤(𝑅 ∩ (𝐴 × 𝐴))𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
7469, 73eqeltrd 2688 . . . . . . . . . . . . 13 (((𝜑𝑧𝑋) ∧ ((𝑥𝐴𝑥𝑅𝑧) ∧ (𝑦𝐴𝑧𝑅𝑦))) → {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
7574anassrs 678 . . . . . . . . . . . 12 ((((𝜑𝑧𝑋) ∧ (𝑥𝐴𝑥𝑅𝑧)) ∧ (𝑦𝐴𝑧𝑅𝑦)) → {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
7675expr 641 . . . . . . . . . . 11 ((((𝜑𝑧𝑋) ∧ (𝑥𝐴𝑥𝑅𝑧)) ∧ 𝑦𝐴) → (𝑧𝑅𝑦 → {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
7752, 76syld 46 . . . . . . . . . 10 ((((𝜑𝑧𝑋) ∧ (𝑥𝐴𝑥𝑅𝑧)) ∧ 𝑦𝐴) → (¬ 𝑦𝑅𝑧 → {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
7877rexlimdva 3013 . . . . . . . . 9 (((𝜑𝑧𝑋) ∧ (𝑥𝐴𝑥𝑅𝑧)) → (∃𝑦𝐴 ¬ 𝑦𝑅𝑧 → {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
7945, 78syl5bi 231 . . . . . . . 8 (((𝜑𝑧𝑋) ∧ (𝑥𝐴𝑥𝑅𝑧)) → ({𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ≠ ∅ → {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
8040, 79pm2.61dne 2868 . . . . . . 7 (((𝜑𝑧𝑋) ∧ (𝑥𝐴𝑥𝑅𝑧)) → {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
8180rexlimdvaa 3014 . . . . . 6 ((𝜑𝑧𝑋) → (∃𝑥𝐴 𝑥𝑅𝑧 → {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
8232, 81syl5bi 231 . . . . 5 ((𝜑𝑧𝑋) → (¬ ∀𝑤𝐴 ¬ 𝑤𝑅𝑧 → {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
8328, 82pm2.61d 169 . . . 4 ((𝜑𝑧𝑋) → {𝑤𝐴 ∣ ¬ 𝑤𝑅𝑧} ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
848, 83eqeltrd 2688 . . 3 ((𝜑𝑧𝑋) → ({𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧} ∩ 𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
8584ralrimiva 2949 . 2 (𝜑 → ∀𝑧𝑋 ({𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧} ∩ 𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
86 dmexg 6989 . . . . . . 7 (𝑅 ∈ TosetRel → dom 𝑅 ∈ V)
879, 86syl 17 . . . . . 6 (𝜑 → dom 𝑅 ∈ V)
8817, 87syl5eqel 2692 . . . . 5 (𝜑𝑋 ∈ V)
89 rabexg 4739 . . . . 5 (𝑋 ∈ V → {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧} ∈ V)
9088, 89syl 17 . . . 4 (𝜑 → {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧} ∈ V)
9190ralrimivw 2950 . . 3 (𝜑 → ∀𝑧𝑋 {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧} ∈ V)
92 eqid 2610 . . . 4 (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) = (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧})
93 ineq1 3769 . . . . 5 (𝑣 = {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧} → (𝑣𝐴) = ({𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧} ∩ 𝐴))
9493eleq1d 2672 . . . 4 (𝑣 = {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧} → ((𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ ({𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧} ∩ 𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
9592, 94ralrnmpt 6276 . . 3 (∀𝑧𝑋 {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧} ∈ V → (∀𝑣 ∈ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧})(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ ∀𝑧𝑋 ({𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧} ∩ 𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
9691, 95syl 17 . 2 (𝜑 → (∀𝑣 ∈ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧})(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ ∀𝑧𝑋 ({𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧} ∩ 𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
9785, 96mpbird 246 1 (𝜑 → ∀𝑣 ∈ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧})(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  cin 3539  wss 3540  c0 3874   class class class wbr 4583  cmpt 4643   × cxp 5036  dom cdm 5038  ran crn 5039  cfv 5804  ordTopcordt 15982  PosetRelcps 17021   TosetRel ctsr 17022  Topctop 20517  TopOnctopon 20518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-fin 7845  df-fi 8200  df-topgen 15927  df-ordt 15984  df-ps 17023  df-tsr 17024  df-top 20521  df-bases 20522  df-topon 20523
This theorem is referenced by:  ordtrest2  20818
  Copyright terms: Public domain W3C validator