Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlsegvdeglem2 Structured version   Visualization version   GIF version

Theorem trlsegvdeglem2 41389
Description: Lemma for trlsegvdeg 41395. (Contributed by AV, 20-Feb-2021.)
Hypotheses
Ref Expression
trlsegvdeg.v 𝑉 = (Vtx‘𝐺)
trlsegvdeg.i 𝐼 = (iEdg‘𝐺)
trlsegvdeg.f (𝜑 → Fun 𝐼)
trlsegvdeg.n (𝜑𝑁 ∈ (0..^(#‘𝐹)))
trlsegvdeg.u (𝜑𝑈𝑉)
trlsegvdeg.w (𝜑𝐹(TrailS‘𝐺)𝑃)
trlsegvdeg.vx (𝜑 → (Vtx‘𝑋) = 𝑉)
trlsegvdeg.vy (𝜑 → (Vtx‘𝑌) = 𝑉)
trlsegvdeg.vz (𝜑 → (Vtx‘𝑍) = 𝑉)
trlsegvdeg.ix (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
trlsegvdeg.iy (𝜑 → (iEdg‘𝑌) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
trlsegvdeg.iz (𝜑 → (iEdg‘𝑍) = (𝐼 ↾ (𝐹 “ (0...𝑁))))
Assertion
Ref Expression
trlsegvdeglem2 (𝜑 → Fun (iEdg‘𝑋))

Proof of Theorem trlsegvdeglem2
StepHypRef Expression
1 trlsegvdeg.f . . 3 (𝜑 → Fun 𝐼)
2 funres 5843 . . 3 (Fun 𝐼 → Fun (𝐼 ↾ (𝐹 “ (0..^𝑁))))
31, 2syl 17 . 2 (𝜑 → Fun (𝐼 ↾ (𝐹 “ (0..^𝑁))))
4 trlsegvdeg.ix . . 3 (𝜑 → (iEdg‘𝑋) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
54funeqd 5825 . 2 (𝜑 → (Fun (iEdg‘𝑋) ↔ Fun (𝐼 ↾ (𝐹 “ (0..^𝑁)))))
63, 5mpbird 246 1 (𝜑 → Fun (iEdg‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  {csn 4125  cop 4131   class class class wbr 4583  cres 5040  cima 5041  Fun wfun 5798  cfv 5804  (class class class)co 6549  0cc0 9815  ...cfz 12197  ..^cfzo 12334  #chash 12979  Vtxcvtx 25673  iEdgciedg 25674  TrailSctrls 40899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-in 3547  df-ss 3554  df-br 4584  df-opab 4644  df-rel 5045  df-cnv 5046  df-co 5047  df-res 5050  df-fun 5806
This theorem is referenced by:  trlsegvdeg  41395
  Copyright terms: Public domain W3C validator