Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trintALTVD Structured version   Visualization version   GIF version

Theorem trintALTVD 38138
Description: The intersection of a class of transitive sets is transitive. Virtual deduction proof of trintALT 38139. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. trintALT 38139 is trintALTVD 38138 without virtual deductions and was automatically derived from trintALTVD 38138.
1:: (   𝑥𝐴Tr 𝑥   ▶   𝑥𝐴Tr 𝑥   )
2:: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   (𝑧𝑦𝑦 𝐴)   )
3:2: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑧𝑦   )
4:2: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑦 𝐴   )
5:4: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑞𝐴𝑦𝑞   )
6:5: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   (𝑞𝐴𝑦𝑞)   )
7:: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴), 𝑞𝐴   ▶   𝑞𝐴   )
8:7,6: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴), 𝑞𝐴   ▶   𝑦𝑞   )
9:7,1: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴), 𝑞𝐴   ▶   [𝑞 / 𝑥]Tr 𝑥   )
10:7,9: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴), 𝑞𝐴   ▶   Tr 𝑞   )
11:10,3,8: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴), 𝑞𝐴   ▶   𝑧𝑞   )
12:11: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   (𝑞𝐴𝑧𝑞)   )
13:12: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑞(𝑞𝐴𝑧𝑞)   )
14:13: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑞𝐴𝑧𝑞   )
15:3,14: (   𝑥𝐴Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑧 𝐴   )
16:15: (   𝑥𝐴Tr 𝑥   ▶   ((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴)   )
17:16: (   𝑥𝐴Tr 𝑥   ▶   𝑧𝑦((𝑧 𝑦𝑦 𝐴) → 𝑧 𝐴)   )
18:17: (   𝑥𝐴Tr 𝑥   ▶   Tr 𝐴   )
qed:18: (∀𝑥𝐴Tr 𝑥 → Tr 𝐴)
(Contributed by Alan Sare, 17-Apr-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
trintALTVD (∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem trintALTVD
Dummy variables 𝑞 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idn2 37859 . . . . . . 7 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   (𝑧𝑦𝑦 𝐴)   )
2 simpl 472 . . . . . . 7 ((𝑧𝑦𝑦 𝐴) → 𝑧𝑦)
31, 2e2 37877 . . . . . 6 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑧𝑦   )
4 idn3 37861 . . . . . . . . . . 11 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ,   𝑞𝐴   ▶   𝑞𝐴   )
5 idn1 37811 . . . . . . . . . . . 12 (   𝑥𝐴 Tr 𝑥   ▶   𝑥𝐴 Tr 𝑥   )
6 rspsbc 3484 . . . . . . . . . . . 12 (𝑞𝐴 → (∀𝑥𝐴 Tr 𝑥[𝑞 / 𝑥]Tr 𝑥))
74, 5, 6e31 37999 . . . . . . . . . . 11 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ,   𝑞𝐴   ▶   [𝑞 / 𝑥]Tr 𝑥   )
8 trsbc 37771 . . . . . . . . . . . 12 (𝑞𝐴 → ([𝑞 / 𝑥]Tr 𝑥 ↔ Tr 𝑞))
98biimpd 218 . . . . . . . . . . 11 (𝑞𝐴 → ([𝑞 / 𝑥]Tr 𝑥 → Tr 𝑞))
104, 7, 9e33 37982 . . . . . . . . . 10 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ,   𝑞𝐴   ▶   Tr 𝑞   )
11 simpr 476 . . . . . . . . . . . . . 14 ((𝑧𝑦𝑦 𝐴) → 𝑦 𝐴)
121, 11e2 37877 . . . . . . . . . . . . 13 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑦 𝐴   )
13 elintg 4418 . . . . . . . . . . . . . 14 (𝑦 𝐴 → (𝑦 𝐴 ↔ ∀𝑞𝐴 𝑦𝑞))
1413ibi 255 . . . . . . . . . . . . 13 (𝑦 𝐴 → ∀𝑞𝐴 𝑦𝑞)
1512, 14e2 37877 . . . . . . . . . . . 12 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑞𝐴 𝑦𝑞   )
16 rsp 2913 . . . . . . . . . . . 12 (∀𝑞𝐴 𝑦𝑞 → (𝑞𝐴𝑦𝑞))
1715, 16e2 37877 . . . . . . . . . . 11 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   (𝑞𝐴𝑦𝑞)   )
18 pm2.27 41 . . . . . . . . . . 11 (𝑞𝐴 → ((𝑞𝐴𝑦𝑞) → 𝑦𝑞))
194, 17, 18e32 38006 . . . . . . . . . 10 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ,   𝑞𝐴   ▶   𝑦𝑞   )
20 trel 4687 . . . . . . . . . . 11 (Tr 𝑞 → ((𝑧𝑦𝑦𝑞) → 𝑧𝑞))
2120expd 451 . . . . . . . . . 10 (Tr 𝑞 → (𝑧𝑦 → (𝑦𝑞𝑧𝑞)))
2210, 3, 19, 21e323 38014 . . . . . . . . 9 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ,   𝑞𝐴   ▶   𝑧𝑞   )
2322in3 37855 . . . . . . . 8 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   (𝑞𝐴𝑧𝑞)   )
2423gen21 37865 . . . . . . 7 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑞(𝑞𝐴𝑧𝑞)   )
25 df-ral 2901 . . . . . . . 8 (∀𝑞𝐴 𝑧𝑞 ↔ ∀𝑞(𝑞𝐴𝑧𝑞))
2625biimpri 217 . . . . . . 7 (∀𝑞(𝑞𝐴𝑧𝑞) → ∀𝑞𝐴 𝑧𝑞)
2724, 26e2 37877 . . . . . 6 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑞𝐴 𝑧𝑞   )
28 elintg 4418 . . . . . . 7 (𝑧𝑦 → (𝑧 𝐴 ↔ ∀𝑞𝐴 𝑧𝑞))
2928biimprd 237 . . . . . 6 (𝑧𝑦 → (∀𝑞𝐴 𝑧𝑞𝑧 𝐴))
303, 27, 29e22 37917 . . . . 5 (   𝑥𝐴 Tr 𝑥   ,   (𝑧𝑦𝑦 𝐴)   ▶   𝑧 𝐴   )
3130in2 37851 . . . 4 (   𝑥𝐴 Tr 𝑥   ▶   ((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴)   )
3231gen12 37864 . . 3 (   𝑥𝐴 Tr 𝑥   ▶   𝑧𝑦((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴)   )
33 dftr2 4682 . . . 4 (Tr 𝐴 ↔ ∀𝑧𝑦((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴))
3433biimpri 217 . . 3 (∀𝑧𝑦((𝑧𝑦𝑦 𝐴) → 𝑧 𝐴) → Tr 𝐴)
3532, 34e1a 37873 . 2 (   𝑥𝐴 Tr 𝑥   ▶   Tr 𝐴   )
3635in1 37808 1 (∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wal 1473  wcel 1977  wral 2896  [wsbc 3402   cint 4410  Tr wtr 4680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-v 3175  df-sbc 3403  df-in 3547  df-ss 3554  df-uni 4373  df-int 4411  df-tr 4681  df-vd1 37807  df-vd2 37815  df-vd3 37827
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator