MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tngval Structured version   Visualization version   GIF version

Theorem tngval 22253
Description: Value of the function which augments a given structure 𝐺 with a norm 𝑁. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
tngval.t 𝑇 = (𝐺 toNrmGrp 𝑁)
tngval.m = (-g𝐺)
tngval.d 𝐷 = (𝑁 )
tngval.j 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
tngval ((𝐺𝑉𝑁𝑊) → 𝑇 = ((𝐺 sSet ⟨(dist‘ndx), 𝐷⟩) sSet ⟨(TopSet‘ndx), 𝐽⟩))

Proof of Theorem tngval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tngval.t . 2 𝑇 = (𝐺 toNrmGrp 𝑁)
2 elex 3185 . . 3 (𝐺𝑉𝐺 ∈ V)
3 elex 3185 . . 3 (𝑁𝑊𝑁 ∈ V)
4 simpl 472 . . . . . 6 ((𝑔 = 𝐺𝑓 = 𝑁) → 𝑔 = 𝐺)
5 simpr 476 . . . . . . . . 9 ((𝑔 = 𝐺𝑓 = 𝑁) → 𝑓 = 𝑁)
64fveq2d 6107 . . . . . . . . . 10 ((𝑔 = 𝐺𝑓 = 𝑁) → (-g𝑔) = (-g𝐺))
7 tngval.m . . . . . . . . . 10 = (-g𝐺)
86, 7syl6eqr 2662 . . . . . . . . 9 ((𝑔 = 𝐺𝑓 = 𝑁) → (-g𝑔) = )
95, 8coeq12d 5208 . . . . . . . 8 ((𝑔 = 𝐺𝑓 = 𝑁) → (𝑓 ∘ (-g𝑔)) = (𝑁 ))
10 tngval.d . . . . . . . 8 𝐷 = (𝑁 )
119, 10syl6eqr 2662 . . . . . . 7 ((𝑔 = 𝐺𝑓 = 𝑁) → (𝑓 ∘ (-g𝑔)) = 𝐷)
1211opeq2d 4347 . . . . . 6 ((𝑔 = 𝐺𝑓 = 𝑁) → ⟨(dist‘ndx), (𝑓 ∘ (-g𝑔))⟩ = ⟨(dist‘ndx), 𝐷⟩)
134, 12oveq12d 6567 . . . . 5 ((𝑔 = 𝐺𝑓 = 𝑁) → (𝑔 sSet ⟨(dist‘ndx), (𝑓 ∘ (-g𝑔))⟩) = (𝐺 sSet ⟨(dist‘ndx), 𝐷⟩))
1411fveq2d 6107 . . . . . . 7 ((𝑔 = 𝐺𝑓 = 𝑁) → (MetOpen‘(𝑓 ∘ (-g𝑔))) = (MetOpen‘𝐷))
15 tngval.j . . . . . . 7 𝐽 = (MetOpen‘𝐷)
1614, 15syl6eqr 2662 . . . . . 6 ((𝑔 = 𝐺𝑓 = 𝑁) → (MetOpen‘(𝑓 ∘ (-g𝑔))) = 𝐽)
1716opeq2d 4347 . . . . 5 ((𝑔 = 𝐺𝑓 = 𝑁) → ⟨(TopSet‘ndx), (MetOpen‘(𝑓 ∘ (-g𝑔)))⟩ = ⟨(TopSet‘ndx), 𝐽⟩)
1813, 17oveq12d 6567 . . . 4 ((𝑔 = 𝐺𝑓 = 𝑁) → ((𝑔 sSet ⟨(dist‘ndx), (𝑓 ∘ (-g𝑔))⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑓 ∘ (-g𝑔)))⟩) = ((𝐺 sSet ⟨(dist‘ndx), 𝐷⟩) sSet ⟨(TopSet‘ndx), 𝐽⟩))
19 df-tng 22199 . . . 4 toNrmGrp = (𝑔 ∈ V, 𝑓 ∈ V ↦ ((𝑔 sSet ⟨(dist‘ndx), (𝑓 ∘ (-g𝑔))⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑓 ∘ (-g𝑔)))⟩))
20 ovex 6577 . . . 4 ((𝐺 sSet ⟨(dist‘ndx), 𝐷⟩) sSet ⟨(TopSet‘ndx), 𝐽⟩) ∈ V
2118, 19, 20ovmpt2a 6689 . . 3 ((𝐺 ∈ V ∧ 𝑁 ∈ V) → (𝐺 toNrmGrp 𝑁) = ((𝐺 sSet ⟨(dist‘ndx), 𝐷⟩) sSet ⟨(TopSet‘ndx), 𝐽⟩))
222, 3, 21syl2an 493 . 2 ((𝐺𝑉𝑁𝑊) → (𝐺 toNrmGrp 𝑁) = ((𝐺 sSet ⟨(dist‘ndx), 𝐷⟩) sSet ⟨(TopSet‘ndx), 𝐽⟩))
231, 22syl5eq 2656 1 ((𝐺𝑉𝑁𝑊) → 𝑇 = ((𝐺 sSet ⟨(dist‘ndx), 𝐷⟩) sSet ⟨(TopSet‘ndx), 𝐽⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  cop 4131  ccom 5042  cfv 5804  (class class class)co 6549  ndxcnx 15692   sSet csts 15693  TopSetcts 15774  distcds 15777  -gcsg 17247  MetOpencmopn 19557   toNrmGrp ctng 22193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-tng 22199
This theorem is referenced by:  tnglem  22254  tngds  22262  tngtset  22263
  Copyright terms: Public domain W3C validator