Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sspsstrd | Structured version Visualization version GIF version |
Description: Transitivity involving subclass and proper subclass inclusion. Deduction form of sspsstr 3674. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
sspsstrd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
sspsstrd.2 | ⊢ (𝜑 → 𝐵 ⊊ 𝐶) |
Ref | Expression |
---|---|
sspsstrd | ⊢ (𝜑 → 𝐴 ⊊ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspsstrd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | sspsstrd.2 | . 2 ⊢ (𝜑 → 𝐵 ⊊ 𝐶) | |
3 | sspsstr 3674 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊊ 𝐶) → 𝐴 ⊊ 𝐶) | |
4 | 1, 2, 3 | syl2anc 691 | 1 ⊢ (𝜑 → 𝐴 ⊊ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3540 ⊊ wpss 3541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-ne 2782 df-in 3547 df-ss 3554 df-pss 3556 |
This theorem is referenced by: marypha1lem 8222 ackbij1lem15 8939 fin23lem38 9054 ltexprlem2 9738 mrieqv2d 16122 |
Copyright terms: Public domain | W3C validator |