Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  psssstrd Structured version   Visualization version   GIF version

Theorem psssstrd 3678
 Description: Transitivity involving subclass and proper subclass inclusion. Deduction form of psssstr 3675. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
psssstrd.1 (𝜑𝐴𝐵)
psssstrd.2 (𝜑𝐵𝐶)
Assertion
Ref Expression
psssstrd (𝜑𝐴𝐶)

Proof of Theorem psssstrd
StepHypRef Expression
1 psssstrd.1 . 2 (𝜑𝐴𝐵)
2 psssstrd.2 . 2 (𝜑𝐵𝐶)
3 psssstr 3675 . 2 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
41, 2, 3syl2anc 691 1 (𝜑𝐴𝐶)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ⊆ wss 3540   ⊊ wpss 3541 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-ne 2782  df-in 3547  df-ss 3554  df-pss 3556 This theorem is referenced by:  ackbij1lem15  8939  lsatssn0  33307  lsatexch  33348  lsatcvatlem  33354  lkrpssN  33468
 Copyright terms: Public domain W3C validator