MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  soltmin Structured version   Visualization version   GIF version

Theorem soltmin 5451
Description: Being less than a minimum, for a general total order. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
soltmin ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶) ↔ (𝐴𝑅𝐵𝐴𝑅𝐶)))

Proof of Theorem soltmin
StepHypRef Expression
1 sopo 4976 . . . . . 6 (𝑅 Or 𝑋𝑅 Po 𝑋)
21ad2antrr 758 . . . . 5 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)) → 𝑅 Po 𝑋)
3 simplr1 1096 . . . . . 6 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)) → 𝐴𝑋)
4 simplr2 1097 . . . . . . 7 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)) → 𝐵𝑋)
5 simplr3 1098 . . . . . . 7 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)) → 𝐶𝑋)
64, 5ifcld 4081 . . . . . 6 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)) → if(𝐵𝑅𝐶, 𝐵, 𝐶) ∈ 𝑋)
73, 6, 43jca 1235 . . . . 5 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)) → (𝐴𝑋 ∧ if(𝐵𝑅𝐶, 𝐵, 𝐶) ∈ 𝑋𝐵𝑋))
8 simpr 476 . . . . 5 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)) → 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶))
9 simpll 786 . . . . . 6 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)) → 𝑅 Or 𝑋)
10 somin1 5448 . . . . . 6 ((𝑅 Or 𝑋 ∧ (𝐵𝑋𝐶𝑋)) → if(𝐵𝑅𝐶, 𝐵, 𝐶)(𝑅 ∪ I )𝐵)
119, 4, 5, 10syl12anc 1316 . . . . 5 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)) → if(𝐵𝑅𝐶, 𝐵, 𝐶)(𝑅 ∪ I )𝐵)
12 poltletr 5447 . . . . . 6 ((𝑅 Po 𝑋 ∧ (𝐴𝑋 ∧ if(𝐵𝑅𝐶, 𝐵, 𝐶) ∈ 𝑋𝐵𝑋)) → ((𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶) ∧ if(𝐵𝑅𝐶, 𝐵, 𝐶)(𝑅 ∪ I )𝐵) → 𝐴𝑅𝐵))
1312imp 444 . . . . 5 (((𝑅 Po 𝑋 ∧ (𝐴𝑋 ∧ if(𝐵𝑅𝐶, 𝐵, 𝐶) ∈ 𝑋𝐵𝑋)) ∧ (𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶) ∧ if(𝐵𝑅𝐶, 𝐵, 𝐶)(𝑅 ∪ I )𝐵)) → 𝐴𝑅𝐵)
142, 7, 8, 11, 13syl22anc 1319 . . . 4 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)) → 𝐴𝑅𝐵)
153, 6, 53jca 1235 . . . . 5 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)) → (𝐴𝑋 ∧ if(𝐵𝑅𝐶, 𝐵, 𝐶) ∈ 𝑋𝐶𝑋))
16 somin2 5450 . . . . . 6 ((𝑅 Or 𝑋 ∧ (𝐵𝑋𝐶𝑋)) → if(𝐵𝑅𝐶, 𝐵, 𝐶)(𝑅 ∪ I )𝐶)
179, 4, 5, 16syl12anc 1316 . . . . 5 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)) → if(𝐵𝑅𝐶, 𝐵, 𝐶)(𝑅 ∪ I )𝐶)
18 poltletr 5447 . . . . . 6 ((𝑅 Po 𝑋 ∧ (𝐴𝑋 ∧ if(𝐵𝑅𝐶, 𝐵, 𝐶) ∈ 𝑋𝐶𝑋)) → ((𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶) ∧ if(𝐵𝑅𝐶, 𝐵, 𝐶)(𝑅 ∪ I )𝐶) → 𝐴𝑅𝐶))
1918imp 444 . . . . 5 (((𝑅 Po 𝑋 ∧ (𝐴𝑋 ∧ if(𝐵𝑅𝐶, 𝐵, 𝐶) ∈ 𝑋𝐶𝑋)) ∧ (𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶) ∧ if(𝐵𝑅𝐶, 𝐵, 𝐶)(𝑅 ∪ I )𝐶)) → 𝐴𝑅𝐶)
202, 15, 8, 17, 19syl22anc 1319 . . . 4 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)) → 𝐴𝑅𝐶)
2114, 20jca 553 . . 3 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) ∧ 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)) → (𝐴𝑅𝐵𝐴𝑅𝐶))
2221ex 449 . 2 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶) → (𝐴𝑅𝐵𝐴𝑅𝐶)))
23 breq2 4587 . . 3 (𝐵 = if(𝐵𝑅𝐶, 𝐵, 𝐶) → (𝐴𝑅𝐵𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)))
24 breq2 4587 . . 3 (𝐶 = if(𝐵𝑅𝐶, 𝐵, 𝐶) → (𝐴𝑅𝐶𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶)))
2523, 24ifboth 4074 . 2 ((𝐴𝑅𝐵𝐴𝑅𝐶) → 𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶))
2622, 25impbid1 214 1 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶) ↔ (𝐴𝑅𝐵𝐴𝑅𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031  wcel 1977  cun 3538  ifcif 4036   class class class wbr 4583   I cid 4948   Po wpo 4957   Or wor 4958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045
This theorem is referenced by:  wemaplem2  8335
  Copyright terms: Public domain W3C validator