MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  soltmin Structured version   Unicode version

Theorem soltmin 5237
Description: Being less than a minimum, for a general total order. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
soltmin  |-  ( ( R  Or  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  ->  ( A R if ( B R C ,  B ,  C )  <->  ( A R B  /\  A R C ) ) )

Proof of Theorem soltmin
StepHypRef Expression
1 sopo 4658 . . . . . 6  |-  ( R  Or  X  ->  R  Po  X )
21ad2antrr 725 . . . . 5  |-  ( ( ( R  Or  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  /\  A R if ( B R C ,  B ,  C ) )  ->  R  Po  X )
3 simplr1 1030 . . . . . 6  |-  ( ( ( R  Or  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  /\  A R if ( B R C ,  B ,  C ) )  ->  A  e.  X )
4 simplr2 1031 . . . . . . 7  |-  ( ( ( R  Or  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  /\  A R if ( B R C ,  B ,  C ) )  ->  B  e.  X )
5 simplr3 1032 . . . . . . 7  |-  ( ( ( R  Or  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  /\  A R if ( B R C ,  B ,  C ) )  ->  C  e.  X )
6 ifcl 3831 . . . . . . 7  |-  ( ( B  e.  X  /\  C  e.  X )  ->  if ( B R C ,  B ,  C )  e.  X
)
74, 5, 6syl2anc 661 . . . . . 6  |-  ( ( ( R  Or  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  /\  A R if ( B R C ,  B ,  C ) )  ->  if ( B R C ,  B ,  C
)  e.  X )
83, 7, 43jca 1168 . . . . 5  |-  ( ( ( R  Or  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  /\  A R if ( B R C ,  B ,  C ) )  -> 
( A  e.  X  /\  if ( B R C ,  B ,  C )  e.  X  /\  B  e.  X
) )
9 simpr 461 . . . . 5  |-  ( ( ( R  Or  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  /\  A R if ( B R C ,  B ,  C ) )  ->  A R if ( B R C ,  B ,  C ) )
10 simpll 753 . . . . . 6  |-  ( ( ( R  Or  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  /\  A R if ( B R C ,  B ,  C ) )  ->  R  Or  X )
11 somin1 5234 . . . . . 6  |-  ( ( R  Or  X  /\  ( B  e.  X  /\  C  e.  X
) )  ->  if ( B R C ,  B ,  C )
( R  u.  _I  ) B )
1210, 4, 5, 11syl12anc 1216 . . . . 5  |-  ( ( ( R  Or  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  /\  A R if ( B R C ,  B ,  C ) )  ->  if ( B R C ,  B ,  C
) ( R  u.  _I  ) B )
13 poltletr 5233 . . . . . 6  |-  ( ( R  Po  X  /\  ( A  e.  X  /\  if ( B R C ,  B ,  C )  e.  X  /\  B  e.  X
) )  ->  (
( A R if ( B R C ,  B ,  C
)  /\  if ( B R C ,  B ,  C ) ( R  u.  _I  ) B )  ->  A R B ) )
1413imp 429 . . . . 5  |-  ( ( ( R  Po  X  /\  ( A  e.  X  /\  if ( B R C ,  B ,  C )  e.  X  /\  B  e.  X
) )  /\  ( A R if ( B R C ,  B ,  C )  /\  if ( B R C ,  B ,  C )
( R  u.  _I  ) B ) )  ->  A R B )
152, 8, 9, 12, 14syl22anc 1219 . . . 4  |-  ( ( ( R  Or  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  /\  A R if ( B R C ,  B ,  C ) )  ->  A R B )
163, 7, 53jca 1168 . . . . 5  |-  ( ( ( R  Or  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  /\  A R if ( B R C ,  B ,  C ) )  -> 
( A  e.  X  /\  if ( B R C ,  B ,  C )  e.  X  /\  C  e.  X
) )
17 somin2 5236 . . . . . 6  |-  ( ( R  Or  X  /\  ( B  e.  X  /\  C  e.  X
) )  ->  if ( B R C ,  B ,  C )
( R  u.  _I  ) C )
1810, 4, 5, 17syl12anc 1216 . . . . 5  |-  ( ( ( R  Or  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  /\  A R if ( B R C ,  B ,  C ) )  ->  if ( B R C ,  B ,  C
) ( R  u.  _I  ) C )
19 poltletr 5233 . . . . . 6  |-  ( ( R  Po  X  /\  ( A  e.  X  /\  if ( B R C ,  B ,  C )  e.  X  /\  C  e.  X
) )  ->  (
( A R if ( B R C ,  B ,  C
)  /\  if ( B R C ,  B ,  C ) ( R  u.  _I  ) C )  ->  A R C ) )
2019imp 429 . . . . 5  |-  ( ( ( R  Po  X  /\  ( A  e.  X  /\  if ( B R C ,  B ,  C )  e.  X  /\  C  e.  X
) )  /\  ( A R if ( B R C ,  B ,  C )  /\  if ( B R C ,  B ,  C )
( R  u.  _I  ) C ) )  ->  A R C )
212, 16, 9, 18, 20syl22anc 1219 . . . 4  |-  ( ( ( R  Or  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  /\  A R if ( B R C ,  B ,  C ) )  ->  A R C )
2215, 21jca 532 . . 3  |-  ( ( ( R  Or  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  /\  A R if ( B R C ,  B ,  C ) )  -> 
( A R B  /\  A R C ) )
2322ex 434 . 2  |-  ( ( R  Or  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  ->  ( A R if ( B R C ,  B ,  C )  ->  ( A R B  /\  A R C ) ) )
24 breq2 4296 . . 3  |-  ( B  =  if ( B R C ,  B ,  C )  ->  ( A R B  <->  A R if ( B R C ,  B ,  C
) ) )
25 breq2 4296 . . 3  |-  ( C  =  if ( B R C ,  B ,  C )  ->  ( A R C  <->  A R if ( B R C ,  B ,  C
) ) )
2624, 25ifboth 3825 . 2  |-  ( ( A R B  /\  A R C )  ->  A R if ( B R C ,  B ,  C ) )
2723, 26impbid1 203 1  |-  ( ( R  Or  X  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X
) )  ->  ( A R if ( B R C ,  B ,  C )  <->  ( A R B  /\  A R C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    e. wcel 1756    u. cun 3326   ifcif 3791   class class class wbr 4292    _I cid 4631    Po wpo 4639    Or wor 4640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pr 4531
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-rab 2724  df-v 2974  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-sn 3878  df-pr 3880  df-op 3884  df-br 4293  df-opab 4351  df-id 4636  df-po 4641  df-so 4642  df-xp 4846  df-rel 4847
This theorem is referenced by:  wemaplem2  7761
  Copyright terms: Public domain W3C validator