MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  somin1 Structured version   Visualization version   GIF version

Theorem somin1 5448
Description: Property of a minimum in a strict order. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
somin1 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵)(𝑅 ∪ I )𝐴)

Proof of Theorem somin1
StepHypRef Expression
1 iftrue 4042 . . . . 5 (𝐴𝑅𝐵 → if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴)
21olcd 407 . . . 4 (𝐴𝑅𝐵 → (if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴 ∨ if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴))
32adantl 481 . . 3 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) ∧ 𝐴𝑅𝐵) → (if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴 ∨ if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴))
4 sotric 4985 . . . . . . 7 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝑅𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝑅𝐴)))
5 orcom 401 . . . . . . . . 9 ((𝐴 = 𝐵𝐵𝑅𝐴) ↔ (𝐵𝑅𝐴𝐴 = 𝐵))
6 eqcom 2617 . . . . . . . . . 10 (𝐴 = 𝐵𝐵 = 𝐴)
76orbi2i 540 . . . . . . . . 9 ((𝐵𝑅𝐴𝐴 = 𝐵) ↔ (𝐵𝑅𝐴𝐵 = 𝐴))
85, 7bitri 263 . . . . . . . 8 ((𝐴 = 𝐵𝐵𝑅𝐴) ↔ (𝐵𝑅𝐴𝐵 = 𝐴))
98notbii 309 . . . . . . 7 (¬ (𝐴 = 𝐵𝐵𝑅𝐴) ↔ ¬ (𝐵𝑅𝐴𝐵 = 𝐴))
104, 9syl6bb 275 . . . . . 6 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝑅𝐵 ↔ ¬ (𝐵𝑅𝐴𝐵 = 𝐴)))
1110con2bid 343 . . . . 5 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → ((𝐵𝑅𝐴𝐵 = 𝐴) ↔ ¬ 𝐴𝑅𝐵))
1211biimpar 501 . . . 4 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) ∧ ¬ 𝐴𝑅𝐵) → (𝐵𝑅𝐴𝐵 = 𝐴))
13 iffalse 4045 . . . . . 6 𝐴𝑅𝐵 → if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐵)
14 breq1 4586 . . . . . . 7 (if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐵 → (if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴𝐵𝑅𝐴))
15 eqeq1 2614 . . . . . . 7 (if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐵 → (if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴𝐵 = 𝐴))
1614, 15orbi12d 742 . . . . . 6 (if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐵 → ((if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴 ∨ if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴) ↔ (𝐵𝑅𝐴𝐵 = 𝐴)))
1713, 16syl 17 . . . . 5 𝐴𝑅𝐵 → ((if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴 ∨ if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴) ↔ (𝐵𝑅𝐴𝐵 = 𝐴)))
1817adantl 481 . . . 4 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) ∧ ¬ 𝐴𝑅𝐵) → ((if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴 ∨ if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴) ↔ (𝐵𝑅𝐴𝐵 = 𝐴)))
1912, 18mpbird 246 . . 3 (((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) ∧ ¬ 𝐴𝑅𝐵) → (if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴 ∨ if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴))
203, 19pm2.61dan 828 . 2 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → (if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴 ∨ if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴))
21 poleloe 5446 . . 3 (𝐴𝑋 → (if(𝐴𝑅𝐵, 𝐴, 𝐵)(𝑅 ∪ I )𝐴 ↔ (if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴 ∨ if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴)))
2221ad2antrl 760 . 2 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → (if(𝐴𝑅𝐵, 𝐴, 𝐵)(𝑅 ∪ I )𝐴 ↔ (if(𝐴𝑅𝐵, 𝐴, 𝐵)𝑅𝐴 ∨ if(𝐴𝑅𝐵, 𝐴, 𝐵) = 𝐴)))
2320, 22mpbird 246 1 ((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵)(𝑅 ∪ I )𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  cun 3538  ifcif 4036   class class class wbr 4583   I cid 4948   Or wor 4958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045
This theorem is referenced by:  somin2  5450  soltmin  5451
  Copyright terms: Public domain W3C validator