Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigagenss Structured version   Visualization version   GIF version

Theorem sigagenss 29539
Description: The generated sigma-algebra is a subset of all sigma-algebras containing the generating set, i.e. the generated sigma-algebra is the smallest sigma-algebra containing the generating set, here 𝐴. (Contributed by Thierry Arnoux, 4-Jun-2017.)
Assertion
Ref Expression
sigagenss ((𝑆 ∈ (sigAlgebra‘ 𝐴) ∧ 𝐴𝑆) → (sigaGen‘𝐴) ⊆ 𝑆)

Proof of Theorem sigagenss
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 ssexg 4732 . . . 4 ((𝐴𝑆𝑆 ∈ (sigAlgebra‘ 𝐴)) → 𝐴 ∈ V)
21ancoms 468 . . 3 ((𝑆 ∈ (sigAlgebra‘ 𝐴) ∧ 𝐴𝑆) → 𝐴 ∈ V)
3 sigagenval 29530 . . 3 (𝐴 ∈ V → (sigaGen‘𝐴) = {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠})
42, 3syl 17 . 2 ((𝑆 ∈ (sigAlgebra‘ 𝐴) ∧ 𝐴𝑆) → (sigaGen‘𝐴) = {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠})
5 sseq2 3590 . . 3 (𝑠 = 𝑆 → (𝐴𝑠𝐴𝑆))
65intminss 4438 . 2 ((𝑆 ∈ (sigAlgebra‘ 𝐴) ∧ 𝐴𝑆) → {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ⊆ 𝑆)
74, 6eqsstrd 3602 1 ((𝑆 ∈ (sigAlgebra‘ 𝐴) ∧ 𝐴𝑆) → (sigaGen‘𝐴) ⊆ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  {crab 2900  Vcvv 3173  wss 3540   cuni 4372   cint 4410  cfv 5804  sigAlgebracsiga 29497  sigaGencsigagen 29528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-int 4411  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-siga 29498  df-sigagen 29529
This theorem is referenced by:  sigagenss2  29540  sigagenid  29541  imambfm  29651
  Copyright terms: Public domain W3C validator