Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salgenval Structured version   Visualization version   GIF version

Theorem salgenval 39217
Description: The sigma-algebra generated by a set. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Assertion
Ref Expression
salgenval (𝑋𝑉 → (SalGen‘𝑋) = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
Distinct variable group:   𝑋,𝑠
Allowed substitution hint:   𝑉(𝑠)

Proof of Theorem salgenval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-salgen 39209 . . 3 SalGen = (𝑥 ∈ V ↦ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑥𝑥𝑠)})
21a1i 11 . 2 (𝑋𝑉 → SalGen = (𝑥 ∈ V ↦ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑥𝑥𝑠)}))
3 unieq 4380 . . . . . . 7 (𝑥 = 𝑋 𝑥 = 𝑋)
43eqeq2d 2620 . . . . . 6 (𝑥 = 𝑋 → ( 𝑠 = 𝑥 𝑠 = 𝑋))
5 sseq1 3589 . . . . . 6 (𝑥 = 𝑋 → (𝑥𝑠𝑋𝑠))
64, 5anbi12d 743 . . . . 5 (𝑥 = 𝑋 → (( 𝑠 = 𝑥𝑥𝑠) ↔ ( 𝑠 = 𝑋𝑋𝑠)))
76rabbidv 3164 . . . 4 (𝑥 = 𝑋 → {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑥𝑥𝑠)} = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
87inteqd 4415 . . 3 (𝑥 = 𝑋 {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑥𝑥𝑠)} = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
98adantl 481 . 2 ((𝑋𝑉𝑥 = 𝑋) → {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑥𝑥𝑠)} = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
10 elex 3185 . 2 (𝑋𝑉𝑋 ∈ V)
11 uniexg 6853 . . . . . . 7 (𝑋𝑉 𝑋 ∈ V)
12 pwsal 39211 . . . . . . 7 ( 𝑋 ∈ V → 𝒫 𝑋 ∈ SAlg)
1311, 12syl 17 . . . . . 6 (𝑋𝑉 → 𝒫 𝑋 ∈ SAlg)
14 unipw 4845 . . . . . . 7 𝒫 𝑋 = 𝑋
1514a1i 11 . . . . . 6 (𝑋𝑉 𝒫 𝑋 = 𝑋)
16 pwuni 4825 . . . . . . 7 𝑋 ⊆ 𝒫 𝑋
1716a1i 11 . . . . . 6 (𝑋𝑉𝑋 ⊆ 𝒫 𝑋)
1813, 15, 17jca32 556 . . . . 5 (𝑋𝑉 → (𝒫 𝑋 ∈ SAlg ∧ ( 𝒫 𝑋 = 𝑋𝑋 ⊆ 𝒫 𝑋)))
19 unieq 4380 . . . . . . . 8 (𝑠 = 𝒫 𝑋 𝑠 = 𝒫 𝑋)
2019eqeq1d 2612 . . . . . . 7 (𝑠 = 𝒫 𝑋 → ( 𝑠 = 𝑋 𝒫 𝑋 = 𝑋))
21 sseq2 3590 . . . . . . 7 (𝑠 = 𝒫 𝑋 → (𝑋𝑠𝑋 ⊆ 𝒫 𝑋))
2220, 21anbi12d 743 . . . . . 6 (𝑠 = 𝒫 𝑋 → (( 𝑠 = 𝑋𝑋𝑠) ↔ ( 𝒫 𝑋 = 𝑋𝑋 ⊆ 𝒫 𝑋)))
2322elrab 3331 . . . . 5 (𝒫 𝑋 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ↔ (𝒫 𝑋 ∈ SAlg ∧ ( 𝒫 𝑋 = 𝑋𝑋 ⊆ 𝒫 𝑋)))
2418, 23sylibr 223 . . . 4 (𝑋𝑉 → 𝒫 𝑋 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
25 ne0i 3880 . . . 4 (𝒫 𝑋 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} → {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ≠ ∅)
2624, 25syl 17 . . 3 (𝑋𝑉 → {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ≠ ∅)
27 intex 4747 . . 3 ({𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ≠ ∅ ↔ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ∈ V)
2826, 27sylib 207 . 2 (𝑋𝑉 {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ∈ V)
292, 9, 10, 28fvmptd 6197 1 (𝑋𝑉 → (SalGen‘𝑋) = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  {crab 2900  Vcvv 3173  wss 3540  c0 3874  𝒫 cpw 4108   cuni 4372   cint 4410  cmpt 4643  cfv 5804  SAlgcsalg 39204  SalGencsalgen 39208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-int 4411  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-salg 39205  df-salgen 39209
This theorem is referenced by:  salgencl  39226  sssalgen  39229  salgenss  39230  salgenuni  39231  issalgend  39232
  Copyright terms: Public domain W3C validator