Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rel1wlk Structured version   Visualization version   GIF version

Theorem rel1wlk 40830
Description: The set (1Walks‘𝐺) of all 1-walks on 𝐺 is a set of pairs by our definition of a 1-walk, and so is a relation. (Contributed by Alexander van der Vekens, 30-Jun-2018.) (Inspired by releupa 26491 contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 19-Feb-2021.)
Assertion
Ref Expression
rel1wlk Rel (1Walks‘𝐺)

Proof of Theorem rel1wlk
Dummy variables 𝑓 𝑔 𝑘 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-1wlks 40800 . 2 1Walks = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(#‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(#‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓𝑘))))})
21relmptopab 6781 1 Rel (1Walks‘𝐺)
Colors of variables: wff setvar class
Syntax hints:  if-wif 1006  w3a 1031   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  wss 3540  {csn 4125  {cpr 4127  dom cdm 5038  Rel wrel 5043  wf 5800  cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816   + caddc 9818  ...cfz 12197  ..^cfzo 12334  #chash 12979  Word cword 13146  Vtxcvtx 25673  iEdgciedg 25674  1Walksc1wlks 40796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fv 5812  df-1wlks 40800
This theorem is referenced by:  1wlkop  40832
  Copyright terms: Public domain W3C validator