Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1wlkvtxiedg Structured version   Visualization version   GIF version

Theorem 1wlkvtxiedg 40829
 Description: The vertices of a walk are connected by indexed edges. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Revised by AV, 2-Jan-2021.) (Proof shortened by AV, 4-Apr-2021.)
Hypothesis
Ref Expression
1wlkvtxeledg.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
1wlkvtxiedg (𝐹(1Walks‘𝐺)𝑃 → ∀𝑘 ∈ (0..^(#‘𝐹))∃𝑒 ∈ ran 𝐼{(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒)
Distinct variable groups:   𝑘,𝐺   𝑘,𝐹   𝑃,𝑘   𝑒,𝐹   𝑒,𝐺   𝑒,𝐼,𝑘   𝑃,𝑒

Proof of Theorem 1wlkvtxiedg
StepHypRef Expression
1 1wlkvtxeledg.i . . 3 𝐼 = (iEdg‘𝐺)
211wlkvtxeledg 40828 . 2 (𝐹(1Walks‘𝐺)𝑃 → ∀𝑘 ∈ (0..^(#‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))
3 fvex 6113 . . . . . . . . 9 (𝑃𝑘) ∈ V
43prnz 4253 . . . . . . . 8 {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ≠ ∅
5 ssn0 3928 . . . . . . . 8 (({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ≠ ∅) → (𝐼‘(𝐹𝑘)) ≠ ∅)
64, 5mpan2 703 . . . . . . 7 ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) → (𝐼‘(𝐹𝑘)) ≠ ∅)
76adantl 481 . . . . . 6 (((𝐹(1Walks‘𝐺)𝑃𝑘 ∈ (0..^(#‘𝐹))) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → (𝐼‘(𝐹𝑘)) ≠ ∅)
8 fvn0fvelrn 6335 . . . . . 6 ((𝐼‘(𝐹𝑘)) ≠ ∅ → (𝐼‘(𝐹𝑘)) ∈ ran 𝐼)
97, 8syl 17 . . . . 5 (((𝐹(1Walks‘𝐺)𝑃𝑘 ∈ (0..^(#‘𝐹))) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → (𝐼‘(𝐹𝑘)) ∈ ran 𝐼)
10 sseq2 3590 . . . . . 6 (𝑒 = (𝐼‘(𝐹𝑘)) → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒 ↔ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))
1110adantl 481 . . . . 5 ((((𝐹(1Walks‘𝐺)𝑃𝑘 ∈ (0..^(#‘𝐹))) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ∧ 𝑒 = (𝐼‘(𝐹𝑘))) → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒 ↔ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))
12 simpr 476 . . . . 5 (((𝐹(1Walks‘𝐺)𝑃𝑘 ∈ (0..^(#‘𝐹))) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))
139, 11, 12rspcedvd 3289 . . . 4 (((𝐹(1Walks‘𝐺)𝑃𝑘 ∈ (0..^(#‘𝐹))) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → ∃𝑒 ∈ ran 𝐼{(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒)
1413ex 449 . . 3 ((𝐹(1Walks‘𝐺)𝑃𝑘 ∈ (0..^(#‘𝐹))) → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) → ∃𝑒 ∈ ran 𝐼{(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒))
1514ralimdva 2945 . 2 (𝐹(1Walks‘𝐺)𝑃 → (∀𝑘 ∈ (0..^(#‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)) → ∀𝑘 ∈ (0..^(#‘𝐹))∃𝑒 ∈ ran 𝐼{(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒))
162, 15mpd 15 1 (𝐹(1Walks‘𝐺)𝑃 → ∀𝑘 ∈ (0..^(#‘𝐹))∃𝑒 ∈ ran 𝐼{(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897   ⊆ wss 3540  ∅c0 3874  {cpr 4127   class class class wbr 4583  ran crn 5039  ‘cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816   + caddc 9818  ..^cfzo 12334  #chash 12979  iEdgciedg 25674  1Walksc1wlks 40796 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-ifp 1007  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-1wlks 40800 This theorem is referenced by:  1wlkvtxedg  40852  wlkOnl1iedg  40873
 Copyright terms: Public domain W3C validator