Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reflexg Structured version   Visualization version   GIF version

Theorem reflexg 36930
 Description: Two ways of saying a relation is reflexive over its domain and range. (Contributed by RP, 4-Aug-2020.)
Assertion
Ref Expression
reflexg (( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ 𝐴 ↔ ∀𝑥𝑦(𝑥𝐴𝑦 → (𝑥𝐴𝑥𝑦𝐴𝑦)))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem reflexg
StepHypRef Expression
1 undmrnresiss 36929 1 (( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ 𝐴 ↔ ∀𝑥𝑦(𝑥𝐴𝑦 → (𝑥𝐴𝑥𝑦𝐴𝑦)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383  ∀wal 1473   ∪ cun 3538   ⊆ wss 3540   class class class wbr 4583   I cid 4948  dom cdm 5038  ran crn 5039   ↾ cres 5040 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-dm 5048  df-rn 5049  df-res 5050 This theorem is referenced by:  refimssco  36932
 Copyright terms: Public domain W3C validator