Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvssco Structured version   Visualization version   GIF version

Theorem cnvssco 36931
Description: A condition weaker than reflexivity. (Contributed by RP, 3-Aug-2020.)
Assertion
Ref Expression
cnvssco (𝐴(𝐵𝐶) ↔ ∀𝑥𝑦𝑧(𝑥𝐴𝑦 → (𝑥𝐶𝑧𝑧𝐵𝑦)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧

Proof of Theorem cnvssco
StepHypRef Expression
1 alcom 2024 . 2 (∀𝑦𝑥(⟨𝑦, 𝑥⟩ ∈ 𝐴 → ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶)) ↔ ∀𝑥𝑦(⟨𝑦, 𝑥⟩ ∈ 𝐴 → ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶)))
2 relcnv 5422 . . 3 Rel 𝐴
3 ssrel 5130 . . 3 (Rel 𝐴 → (𝐴(𝐵𝐶) ↔ ∀𝑦𝑥(⟨𝑦, 𝑥⟩ ∈ 𝐴 → ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶))))
42, 3ax-mp 5 . 2 (𝐴(𝐵𝐶) ↔ ∀𝑦𝑥(⟨𝑦, 𝑥⟩ ∈ 𝐴 → ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶)))
5 19.37v 1897 . . . 4 (∃𝑧(𝑥𝐴𝑦 → (𝑥𝐶𝑧𝑧𝐵𝑦)) ↔ (𝑥𝐴𝑦 → ∃𝑧(𝑥𝐶𝑧𝑧𝐵𝑦)))
6 vex 3176 . . . . . . 7 𝑦 ∈ V
7 vex 3176 . . . . . . 7 𝑥 ∈ V
86, 7brcnv 5227 . . . . . 6 (𝑦𝐴𝑥𝑥𝐴𝑦)
9 df-br 4584 . . . . . 6 (𝑦𝐴𝑥 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝐴)
108, 9bitr3i 265 . . . . 5 (𝑥𝐴𝑦 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝐴)
117, 6brco 5214 . . . . . 6 (𝑥(𝐵𝐶)𝑦 ↔ ∃𝑧(𝑥𝐶𝑧𝑧𝐵𝑦))
126, 7brcnv 5227 . . . . . . 7 (𝑦(𝐵𝐶)𝑥𝑥(𝐵𝐶)𝑦)
13 df-br 4584 . . . . . . 7 (𝑦(𝐵𝐶)𝑥 ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶))
1412, 13bitr3i 265 . . . . . 6 (𝑥(𝐵𝐶)𝑦 ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶))
1511, 14bitr3i 265 . . . . 5 (∃𝑧(𝑥𝐶𝑧𝑧𝐵𝑦) ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶))
1610, 15imbi12i 339 . . . 4 ((𝑥𝐴𝑦 → ∃𝑧(𝑥𝐶𝑧𝑧𝐵𝑦)) ↔ (⟨𝑦, 𝑥⟩ ∈ 𝐴 → ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶)))
175, 16bitri 263 . . 3 (∃𝑧(𝑥𝐴𝑦 → (𝑥𝐶𝑧𝑧𝐵𝑦)) ↔ (⟨𝑦, 𝑥⟩ ∈ 𝐴 → ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶)))
18172albii 1738 . 2 (∀𝑥𝑦𝑧(𝑥𝐴𝑦 → (𝑥𝐶𝑧𝑧𝐵𝑦)) ↔ ∀𝑥𝑦(⟨𝑦, 𝑥⟩ ∈ 𝐴 → ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶)))
191, 4, 183bitr4i 291 1 (𝐴(𝐵𝐶) ↔ ∀𝑥𝑦𝑧(𝑥𝐴𝑦 → (𝑥𝐶𝑧𝑧𝐵𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  wal 1473  wex 1695  wcel 1977  wss 3540  cop 4131   class class class wbr 4583  ccnv 5037  ccom 5042  Rel wrel 5043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047
This theorem is referenced by:  refimssco  36932
  Copyright terms: Public domain W3C validator