MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopval2 Structured version   Visualization version   GIF version

Theorem qtopval2 21309
Description: Value of the quotient topology function when 𝐹 is a function on the base set. (Contributed by Mario Carneiro, 23-Mar-2015.)
Hypothesis
Ref Expression
qtopval.1 𝑋 = 𝐽
Assertion
Ref Expression
qtopval2 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → (𝐽 qTop 𝐹) = {𝑠 ∈ 𝒫 𝑌 ∣ (𝐹𝑠) ∈ 𝐽})
Distinct variable groups:   𝐹,𝑠   𝐽,𝑠   𝑉,𝑠   𝑌,𝑠   𝑍,𝑠   𝑋,𝑠

Proof of Theorem qtopval2
StepHypRef Expression
1 simp1 1054 . . 3 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → 𝐽𝑉)
2 fof 6028 . . . . 5 (𝐹:𝑍onto𝑌𝐹:𝑍𝑌)
323ad2ant2 1076 . . . 4 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → 𝐹:𝑍𝑌)
4 qtopval.1 . . . . . 6 𝑋 = 𝐽
5 uniexg 6853 . . . . . . 7 (𝐽𝑉 𝐽 ∈ V)
653ad2ant1 1075 . . . . . 6 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → 𝐽 ∈ V)
74, 6syl5eqel 2692 . . . . 5 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → 𝑋 ∈ V)
8 simp3 1056 . . . . 5 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → 𝑍𝑋)
97, 8ssexd 4733 . . . 4 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → 𝑍 ∈ V)
10 fex 6394 . . . 4 ((𝐹:𝑍𝑌𝑍 ∈ V) → 𝐹 ∈ V)
113, 9, 10syl2anc 691 . . 3 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → 𝐹 ∈ V)
124qtopval 21308 . . 3 ((𝐽𝑉𝐹 ∈ V) → (𝐽 qTop 𝐹) = {𝑠 ∈ 𝒫 (𝐹𝑋) ∣ ((𝐹𝑠) ∩ 𝑋) ∈ 𝐽})
131, 11, 12syl2anc 691 . 2 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → (𝐽 qTop 𝐹) = {𝑠 ∈ 𝒫 (𝐹𝑋) ∣ ((𝐹𝑠) ∩ 𝑋) ∈ 𝐽})
14 imassrn 5396 . . . . . 6 (𝐹𝑋) ⊆ ran 𝐹
15 forn 6031 . . . . . . 7 (𝐹:𝑍onto𝑌 → ran 𝐹 = 𝑌)
16153ad2ant2 1076 . . . . . 6 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → ran 𝐹 = 𝑌)
1714, 16syl5sseq 3616 . . . . 5 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → (𝐹𝑋) ⊆ 𝑌)
18 foima 6033 . . . . . . 7 (𝐹:𝑍onto𝑌 → (𝐹𝑍) = 𝑌)
19183ad2ant2 1076 . . . . . 6 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → (𝐹𝑍) = 𝑌)
20 imass2 5420 . . . . . . 7 (𝑍𝑋 → (𝐹𝑍) ⊆ (𝐹𝑋))
218, 20syl 17 . . . . . 6 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → (𝐹𝑍) ⊆ (𝐹𝑋))
2219, 21eqsstr3d 3603 . . . . 5 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → 𝑌 ⊆ (𝐹𝑋))
2317, 22eqssd 3585 . . . 4 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → (𝐹𝑋) = 𝑌)
2423pweqd 4113 . . 3 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → 𝒫 (𝐹𝑋) = 𝒫 𝑌)
25 cnvimass 5404 . . . . . . 7 (𝐹𝑠) ⊆ dom 𝐹
26 fdm 5964 . . . . . . . 8 (𝐹:𝑍𝑌 → dom 𝐹 = 𝑍)
273, 26syl 17 . . . . . . 7 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → dom 𝐹 = 𝑍)
2825, 27syl5sseq 3616 . . . . . 6 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → (𝐹𝑠) ⊆ 𝑍)
2928, 8sstrd 3578 . . . . 5 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → (𝐹𝑠) ⊆ 𝑋)
30 df-ss 3554 . . . . 5 ((𝐹𝑠) ⊆ 𝑋 ↔ ((𝐹𝑠) ∩ 𝑋) = (𝐹𝑠))
3129, 30sylib 207 . . . 4 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → ((𝐹𝑠) ∩ 𝑋) = (𝐹𝑠))
3231eleq1d 2672 . . 3 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → (((𝐹𝑠) ∩ 𝑋) ∈ 𝐽 ↔ (𝐹𝑠) ∈ 𝐽))
3324, 32rabeqbidv 3168 . 2 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → {𝑠 ∈ 𝒫 (𝐹𝑋) ∣ ((𝐹𝑠) ∩ 𝑋) ∈ 𝐽} = {𝑠 ∈ 𝒫 𝑌 ∣ (𝐹𝑠) ∈ 𝐽})
3413, 33eqtrd 2644 1 ((𝐽𝑉𝐹:𝑍onto𝑌𝑍𝑋) → (𝐽 qTop 𝐹) = {𝑠 ∈ 𝒫 𝑌 ∣ (𝐹𝑠) ∈ 𝐽})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1031   = wceq 1475  wcel 1977  {crab 2900  Vcvv 3173  cin 3539  wss 3540  𝒫 cpw 4108   cuni 4372  ccnv 5037  dom cdm 5038  ran crn 5039  cima 5041  wf 5800  ontowfo 5802  (class class class)co 6549   qTop cqtop 15986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-qtop 15990
This theorem is referenced by:  elqtop  21310
  Copyright terms: Public domain W3C validator