Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pprodss4v Structured version   Visualization version   GIF version

Theorem pprodss4v 31161
Description: The parallel product is a subclass of ((V × V) × (V × V)). (Contributed by Scott Fenton, 11-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
pprodss4v pprod(𝐴, 𝐵) ⊆ ((V × V) × (V × V))

Proof of Theorem pprodss4v
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-pprod 31131 . 2 pprod(𝐴, 𝐵) = ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V))))
2 txprel 31156 . . 3 Rel ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V))))
3 txpss3v 31155 . . . . . . 7 ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) ⊆ (V × (V × V))
43sseli 3564 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) → ⟨𝑥, 𝑦⟩ ∈ (V × (V × V)))
5 opelxp2 5075 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ (V × (V × V)) → 𝑦 ∈ (V × V))
64, 5syl 17 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) → 𝑦 ∈ (V × V))
7 elvv 5100 . . . . . 6 (𝑦 ∈ (V × V) ↔ ∃𝑧𝑤 𝑦 = ⟨𝑧, 𝑤⟩)
8 opeq2 4341 . . . . . . . . 9 (𝑦 = ⟨𝑧, 𝑤⟩ → ⟨𝑥, 𝑦⟩ = ⟨𝑥, ⟨𝑧, 𝑤⟩⟩)
98eleq1d 2672 . . . . . . . 8 (𝑦 = ⟨𝑧, 𝑤⟩ → (⟨𝑥, 𝑦⟩ ∈ ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) ↔ ⟨𝑥, ⟨𝑧, 𝑤⟩⟩ ∈ ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V))))))
10 df-br 4584 . . . . . . . . 9 (𝑥((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V))))⟨𝑧, 𝑤⟩ ↔ ⟨𝑥, ⟨𝑧, 𝑤⟩⟩ ∈ ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))))
11 vex 3176 . . . . . . . . . . 11 𝑥 ∈ V
12 vex 3176 . . . . . . . . . . 11 𝑧 ∈ V
13 vex 3176 . . . . . . . . . . 11 𝑤 ∈ V
1411, 12, 13brtxp 31157 . . . . . . . . . 10 (𝑥((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V))))⟨𝑧, 𝑤⟩ ↔ (𝑥(𝐴 ∘ (1st ↾ (V × V)))𝑧𝑥(𝐵 ∘ (2nd ↾ (V × V)))𝑤))
1511, 12brco 5214 . . . . . . . . . . . 12 (𝑥(𝐴 ∘ (1st ↾ (V × V)))𝑧 ↔ ∃𝑦(𝑥(1st ↾ (V × V))𝑦𝑦𝐴𝑧))
16 vex 3176 . . . . . . . . . . . . . . . 16 𝑦 ∈ V
1716brres 5323 . . . . . . . . . . . . . . 15 (𝑥(1st ↾ (V × V))𝑦 ↔ (𝑥1st 𝑦𝑥 ∈ (V × V)))
1817simprbi 479 . . . . . . . . . . . . . 14 (𝑥(1st ↾ (V × V))𝑦𝑥 ∈ (V × V))
1918adantr 480 . . . . . . . . . . . . 13 ((𝑥(1st ↾ (V × V))𝑦𝑦𝐴𝑧) → 𝑥 ∈ (V × V))
2019exlimiv 1845 . . . . . . . . . . . 12 (∃𝑦(𝑥(1st ↾ (V × V))𝑦𝑦𝐴𝑧) → 𝑥 ∈ (V × V))
2115, 20sylbi 206 . . . . . . . . . . 11 (𝑥(𝐴 ∘ (1st ↾ (V × V)))𝑧𝑥 ∈ (V × V))
2221adantr 480 . . . . . . . . . 10 ((𝑥(𝐴 ∘ (1st ↾ (V × V)))𝑧𝑥(𝐵 ∘ (2nd ↾ (V × V)))𝑤) → 𝑥 ∈ (V × V))
2314, 22sylbi 206 . . . . . . . . 9 (𝑥((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V))))⟨𝑧, 𝑤⟩ → 𝑥 ∈ (V × V))
2410, 23sylbir 224 . . . . . . . 8 (⟨𝑥, ⟨𝑧, 𝑤⟩⟩ ∈ ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) → 𝑥 ∈ (V × V))
259, 24syl6bi 242 . . . . . . 7 (𝑦 = ⟨𝑧, 𝑤⟩ → (⟨𝑥, 𝑦⟩ ∈ ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) → 𝑥 ∈ (V × V)))
2625exlimivv 1847 . . . . . 6 (∃𝑧𝑤 𝑦 = ⟨𝑧, 𝑤⟩ → (⟨𝑥, 𝑦⟩ ∈ ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) → 𝑥 ∈ (V × V)))
277, 26sylbi 206 . . . . 5 (𝑦 ∈ (V × V) → (⟨𝑥, 𝑦⟩ ∈ ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) → 𝑥 ∈ (V × V)))
286, 27mpcom 37 . . . 4 (⟨𝑥, 𝑦⟩ ∈ ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) → 𝑥 ∈ (V × V))
29 opelxp 5070 . . . 4 (⟨𝑥, 𝑦⟩ ∈ ((V × V) × (V × V)) ↔ (𝑥 ∈ (V × V) ∧ 𝑦 ∈ (V × V)))
3028, 6, 29sylanbrc 695 . . 3 (⟨𝑥, 𝑦⟩ ∈ ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) → ⟨𝑥, 𝑦⟩ ∈ ((V × V) × (V × V)))
312, 30relssi 5134 . 2 ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V)))) ⊆ ((V × V) × (V × V))
321, 31eqsstri 3598 1 pprod(𝐴, 𝐵) ⊆ ((V × V) × (V × V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wex 1695  wcel 1977  Vcvv 3173  wss 3540  cop 4131   class class class wbr 4583   × cxp 5036  cres 5040  ccom 5042  1st c1st 7057  2nd c2nd 7058  ctxp 31106  pprodcpprod 31107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fo 5810  df-fv 5812  df-1st 7059  df-2nd 7060  df-txp 31130  df-pprod 31131
This theorem is referenced by:  brpprod3a  31163
  Copyright terms: Public domain W3C validator