MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrval Structured version   Visualization version   GIF version

Theorem pmtrval 17694
Description: A generated transposition, expressed in a symmetric form. (Contributed by Stefan O'Rear, 16-Aug-2015.)
Hypothesis
Ref Expression
pmtrfval.t 𝑇 = (pmTrsp‘𝐷)
Assertion
Ref Expression
pmtrval ((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) → (𝑇𝑃) = (𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧)))
Distinct variable groups:   𝑧,𝐷   𝑧,𝑇   𝑧,𝑃   𝑧,𝑉

Proof of Theorem pmtrval
Dummy variables 𝑝 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pmtrfval.t . . . . 5 𝑇 = (pmTrsp‘𝐷)
21pmtrfval 17693 . . . 4 (𝐷𝑉𝑇 = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2𝑜} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
32fveq1d 6105 . . 3 (𝐷𝑉 → (𝑇𝑃) = ((𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2𝑜} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))‘𝑃))
433ad2ant1 1075 . 2 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) → (𝑇𝑃) = ((𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2𝑜} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))‘𝑃))
5 elpw2g 4754 . . . . . 6 (𝐷𝑉 → (𝑃 ∈ 𝒫 𝐷𝑃𝐷))
65biimpar 501 . . . . 5 ((𝐷𝑉𝑃𝐷) → 𝑃 ∈ 𝒫 𝐷)
763adant3 1074 . . . 4 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) → 𝑃 ∈ 𝒫 𝐷)
8 simp3 1056 . . . 4 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) → 𝑃 ≈ 2𝑜)
9 breq1 4586 . . . . 5 (𝑦 = 𝑃 → (𝑦 ≈ 2𝑜𝑃 ≈ 2𝑜))
109elrab 3331 . . . 4 (𝑃 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2𝑜} ↔ (𝑃 ∈ 𝒫 𝐷𝑃 ≈ 2𝑜))
117, 8, 10sylanbrc 695 . . 3 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) → 𝑃 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2𝑜})
12 mptexg 6389 . . . 4 (𝐷𝑉 → (𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧)) ∈ V)
13123ad2ant1 1075 . . 3 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) → (𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧)) ∈ V)
14 eleq2 2677 . . . . . 6 (𝑝 = 𝑃 → (𝑧𝑝𝑧𝑃))
15 difeq1 3683 . . . . . . 7 (𝑝 = 𝑃 → (𝑝 ∖ {𝑧}) = (𝑃 ∖ {𝑧}))
1615unieqd 4382 . . . . . 6 (𝑝 = 𝑃 (𝑝 ∖ {𝑧}) = (𝑃 ∖ {𝑧}))
1714, 16ifbieq1d 4059 . . . . 5 (𝑝 = 𝑃 → if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧) = if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧))
1817mpteq2dv 4673 . . . 4 (𝑝 = 𝑃 → (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)) = (𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧)))
19 eqid 2610 . . . 4 (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2𝑜} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = (𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2𝑜} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
2018, 19fvmptg 6189 . . 3 ((𝑃 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2𝑜} ∧ (𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧)) ∈ V) → ((𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2𝑜} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))‘𝑃) = (𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧)))
2111, 13, 20syl2anc 691 . 2 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) → ((𝑝 ∈ {𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2𝑜} ↦ (𝑧𝐷 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))‘𝑃) = (𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧)))
224, 21eqtrd 2644 1 ((𝐷𝑉𝑃𝐷𝑃 ≈ 2𝑜) → (𝑇𝑃) = (𝑧𝐷 ↦ if(𝑧𝑃, (𝑃 ∖ {𝑧}), 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1031   = wceq 1475  wcel 1977  {crab 2900  Vcvv 3173  cdif 3537  wss 3540  ifcif 4036  𝒫 cpw 4108  {csn 4125   cuni 4372   class class class wbr 4583  cmpt 4643  cfv 5804  2𝑜c2o 7441  cen 7838  pmTrspcpmtr 17684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-pmtr 17685
This theorem is referenced by:  pmtrfv  17695  pmtrf  17698
  Copyright terms: Public domain W3C validator