Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclss2polN Structured version   Visualization version   GIF version

Theorem pclss2polN 34225
 Description: The projective subspace closure is a subset of closed subspace closure. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclss2pol.a 𝐴 = (Atoms‘𝐾)
pclss2pol.o = (⊥𝑃𝐾)
pclss2pol.c 𝑈 = (PCl‘𝐾)
Assertion
Ref Expression
pclss2polN ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑈𝑋) ⊆ ( ‘( 𝑋)))

Proof of Theorem pclss2polN
StepHypRef Expression
1 simpl 472 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → 𝐾 ∈ HL)
2 pclss2pol.a . . . 4 𝐴 = (Atoms‘𝐾)
3 pclss2pol.o . . . 4 = (⊥𝑃𝐾)
42, 32polssN 34219 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → 𝑋 ⊆ ( ‘( 𝑋)))
52, 3polssatN 34212 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) ⊆ 𝐴)
62, 3polssatN 34212 . . . 4 ((𝐾 ∈ HL ∧ ( 𝑋) ⊆ 𝐴) → ( ‘( 𝑋)) ⊆ 𝐴)
75, 6syldan 486 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( ‘( 𝑋)) ⊆ 𝐴)
8 pclss2pol.c . . . 4 𝑈 = (PCl‘𝐾)
92, 8pclssN 34198 . . 3 ((𝐾 ∈ HL ∧ 𝑋 ⊆ ( ‘( 𝑋)) ∧ ( ‘( 𝑋)) ⊆ 𝐴) → (𝑈𝑋) ⊆ (𝑈‘( ‘( 𝑋))))
101, 4, 7, 9syl3anc 1318 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑈𝑋) ⊆ (𝑈‘( ‘( 𝑋))))
11 eqid 2610 . . . . 5 (PSubSp‘𝐾) = (PSubSp‘𝐾)
122, 11, 3polsubN 34211 . . . 4 ((𝐾 ∈ HL ∧ ( 𝑋) ⊆ 𝐴) → ( ‘( 𝑋)) ∈ (PSubSp‘𝐾))
135, 12syldan 486 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( ‘( 𝑋)) ∈ (PSubSp‘𝐾))
1411, 8pclidN 34200 . . 3 ((𝐾 ∈ HL ∧ ( ‘( 𝑋)) ∈ (PSubSp‘𝐾)) → (𝑈‘( ‘( 𝑋))) = ( ‘( 𝑋)))
1513, 14syldan 486 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑈‘( ‘( 𝑋))) = ( ‘( 𝑋)))
1610, 15sseqtrd 3604 1 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑈𝑋) ⊆ ( ‘( 𝑋)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ⊆ wss 3540  ‘cfv 5804  Atomscatm 33568  HLchlt 33655  PSubSpcpsubsp 33800  PClcpclN 34191  ⊥𝑃cpolN 34206 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-riotaBAD 33257 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-undef 7286  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-p1 16863  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-psubsp 33807  df-pmap 33808  df-pclN 34192  df-polarityN 34207 This theorem is referenced by:  pcl0N  34226
 Copyright terms: Public domain W3C validator