MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtr3OLD Structured version   Visualization version   GIF version

Theorem ordtr3OLD 5687
Description: Obsolete proof of ordtr3 5686 as of 24-Sep-2021. (Contributed by Mario Carneiro, 30-Dec-2014.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
ordtr3OLD ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴𝐵 → (𝐴𝐶𝐶𝐵)))

Proof of Theorem ordtr3OLD
StepHypRef Expression
1 simpr 476 . . . . 5 ((Ord 𝐵 ∧ Ord 𝐶) → Ord 𝐶)
2 ordelord 5662 . . . . . 6 ((Ord 𝐵𝐴𝐵) → Ord 𝐴)
32adantlr 747 . . . . 5 (((Ord 𝐵 ∧ Ord 𝐶) ∧ 𝐴𝐵) → Ord 𝐴)
4 ordtri1 5673 . . . . 5 ((Ord 𝐶 ∧ Ord 𝐴) → (𝐶𝐴 ↔ ¬ 𝐴𝐶))
51, 3, 4syl2an2r 872 . . . 4 (((Ord 𝐵 ∧ Ord 𝐶) ∧ 𝐴𝐵) → (𝐶𝐴 ↔ ¬ 𝐴𝐶))
6 ordtr2 5685 . . . . . . 7 ((Ord 𝐶 ∧ Ord 𝐵) → ((𝐶𝐴𝐴𝐵) → 𝐶𝐵))
76ancoms 468 . . . . . 6 ((Ord 𝐵 ∧ Ord 𝐶) → ((𝐶𝐴𝐴𝐵) → 𝐶𝐵))
87expcomd 453 . . . . 5 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴𝐵 → (𝐶𝐴𝐶𝐵)))
98imp 444 . . . 4 (((Ord 𝐵 ∧ Ord 𝐶) ∧ 𝐴𝐵) → (𝐶𝐴𝐶𝐵))
105, 9sylbird 249 . . 3 (((Ord 𝐵 ∧ Ord 𝐶) ∧ 𝐴𝐵) → (¬ 𝐴𝐶𝐶𝐵))
1110orrd 392 . 2 (((Ord 𝐵 ∧ Ord 𝐶) ∧ 𝐴𝐵) → (𝐴𝐶𝐶𝐵))
1211ex 449 1 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴𝐵 → (𝐴𝐶𝐶𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  wcel 1977  wss 3540  Ord word 5639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-tr 4681  df-eprel 4949  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-ord 5643
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator