Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordtr3OLD | Structured version Visualization version GIF version |
Description: Obsolete proof of ordtr3 5686 as of 24-Sep-2021. (Contributed by Mario Carneiro, 30-Dec-2014.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
ordtr3OLD | ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 476 | . . . . 5 ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → Ord 𝐶) | |
2 | ordelord 5662 | . . . . . 6 ⊢ ((Ord 𝐵 ∧ 𝐴 ∈ 𝐵) → Ord 𝐴) | |
3 | 2 | adantlr 747 | . . . . 5 ⊢ (((Ord 𝐵 ∧ Ord 𝐶) ∧ 𝐴 ∈ 𝐵) → Ord 𝐴) |
4 | ordtri1 5673 | . . . . 5 ⊢ ((Ord 𝐶 ∧ Ord 𝐴) → (𝐶 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐶)) | |
5 | 1, 3, 4 | syl2an2r 872 | . . . 4 ⊢ (((Ord 𝐵 ∧ Ord 𝐶) ∧ 𝐴 ∈ 𝐵) → (𝐶 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐶)) |
6 | ordtr2 5685 | . . . . . . 7 ⊢ ((Ord 𝐶 ∧ Ord 𝐵) → ((𝐶 ⊆ 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐶 ∈ 𝐵)) | |
7 | 6 | ancoms 468 | . . . . . 6 ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → ((𝐶 ⊆ 𝐴 ∧ 𝐴 ∈ 𝐵) → 𝐶 ∈ 𝐵)) |
8 | 7 | expcomd 453 | . . . . 5 ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴 ∈ 𝐵 → (𝐶 ⊆ 𝐴 → 𝐶 ∈ 𝐵))) |
9 | 8 | imp 444 | . . . 4 ⊢ (((Ord 𝐵 ∧ Ord 𝐶) ∧ 𝐴 ∈ 𝐵) → (𝐶 ⊆ 𝐴 → 𝐶 ∈ 𝐵)) |
10 | 5, 9 | sylbird 249 | . . 3 ⊢ (((Ord 𝐵 ∧ Ord 𝐶) ∧ 𝐴 ∈ 𝐵) → (¬ 𝐴 ∈ 𝐶 → 𝐶 ∈ 𝐵)) |
11 | 10 | orrd 392 | . 2 ⊢ (((Ord 𝐵 ∧ Ord 𝐶) ∧ 𝐴 ∈ 𝐵) → (𝐴 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵)) |
12 | 11 | ex 449 | 1 ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 195 ∨ wo 382 ∧ wa 383 ∈ wcel 1977 ⊆ wss 3540 Ord word 5639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-tr 4681 df-eprel 4949 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-ord 5643 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |