Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordtprsval Structured version   Visualization version   GIF version

Theorem ordtprsval 29292
Description: Value of the order topology for a preset. (Contributed by Thierry Arnoux, 11-Sep-2015.)
Hypotheses
Ref Expression
ordtNEW.b 𝐵 = (Base‘𝐾)
ordtNEW.l = ((le‘𝐾) ∩ (𝐵 × 𝐵))
ordtposval.e 𝐸 = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥})
ordtposval.f 𝐹 = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})
Assertion
Ref Expression
ordtprsval (𝐾 ∈ Preset → (ordTop‘ ) = (topGen‘(fi‘({𝐵} ∪ (𝐸𝐹)))))
Distinct variable groups:   𝑥,𝑦,   𝑥,𝐵,𝑦   𝑥,𝐾,𝑦
Allowed substitution hints:   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem ordtprsval
StepHypRef Expression
1 ordtNEW.l . . . 4 = ((le‘𝐾) ∩ (𝐵 × 𝐵))
2 fvex 6113 . . . . 5 (le‘𝐾) ∈ V
32inex1 4727 . . . 4 ((le‘𝐾) ∩ (𝐵 × 𝐵)) ∈ V
41, 3eqeltri 2684 . . 3 ∈ V
5 eqid 2610 . . . 4 dom = dom
6 eqid 2610 . . . 4 ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥}) = ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥})
7 eqid 2610 . . . 4 ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦}) = ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦})
85, 6, 7ordtval 20803 . . 3 ( ∈ V → (ordTop‘ ) = (topGen‘(fi‘({dom } ∪ (ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦}))))))
94, 8ax-mp 5 . 2 (ordTop‘ ) = (topGen‘(fi‘({dom } ∪ (ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦})))))
10 ordtNEW.b . . . . . . 7 𝐵 = (Base‘𝐾)
1110, 1prsdm 29288 . . . . . 6 (𝐾 ∈ Preset → dom = 𝐵)
1211sneqd 4137 . . . . 5 (𝐾 ∈ Preset → {dom } = {𝐵})
13 rabeq 3166 . . . . . . . . . 10 (dom = 𝐵 → {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥} = {𝑦𝐵 ∣ ¬ 𝑦 𝑥})
1411, 13syl 17 . . . . . . . . 9 (𝐾 ∈ Preset → {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥} = {𝑦𝐵 ∣ ¬ 𝑦 𝑥})
1511, 14mpteq12dv 4663 . . . . . . . 8 (𝐾 ∈ Preset → (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥}) = (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}))
1615rneqd 5274 . . . . . . 7 (𝐾 ∈ Preset → ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥}) = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥}))
17 ordtposval.e . . . . . . 7 𝐸 = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑦 𝑥})
1816, 17syl6eqr 2662 . . . . . 6 (𝐾 ∈ Preset → ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥}) = 𝐸)
19 rabeq 3166 . . . . . . . . . 10 (dom = 𝐵 → {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦} = {𝑦𝐵 ∣ ¬ 𝑥 𝑦})
2011, 19syl 17 . . . . . . . . 9 (𝐾 ∈ Preset → {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦} = {𝑦𝐵 ∣ ¬ 𝑥 𝑦})
2111, 20mpteq12dv 4663 . . . . . . . 8 (𝐾 ∈ Preset → (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦}) = (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))
2221rneqd 5274 . . . . . . 7 (𝐾 ∈ Preset → ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦}) = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦}))
23 ordtposval.f . . . . . . 7 𝐹 = ran (𝑥𝐵 ↦ {𝑦𝐵 ∣ ¬ 𝑥 𝑦})
2422, 23syl6eqr 2662 . . . . . 6 (𝐾 ∈ Preset → ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦}) = 𝐹)
2518, 24uneq12d 3730 . . . . 5 (𝐾 ∈ Preset → (ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦})) = (𝐸𝐹))
2612, 25uneq12d 3730 . . . 4 (𝐾 ∈ Preset → ({dom } ∪ (ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦}))) = ({𝐵} ∪ (𝐸𝐹)))
2726fveq2d 6107 . . 3 (𝐾 ∈ Preset → (fi‘({dom } ∪ (ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦})))) = (fi‘({𝐵} ∪ (𝐸𝐹))))
2827fveq2d 6107 . 2 (𝐾 ∈ Preset → (topGen‘(fi‘({dom } ∪ (ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑦 𝑥}) ∪ ran (𝑥 ∈ dom ↦ {𝑦 ∈ dom ∣ ¬ 𝑥 𝑦}))))) = (topGen‘(fi‘({𝐵} ∪ (𝐸𝐹)))))
299, 28syl5eq 2656 1 (𝐾 ∈ Preset → (ordTop‘ ) = (topGen‘(fi‘({𝐵} ∪ (𝐸𝐹)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1475  wcel 1977  {crab 2900  Vcvv 3173  cun 3538  cin 3539  {csn 4125   class class class wbr 4583  cmpt 4643   × cxp 5036  dom cdm 5038  ran crn 5039  cfv 5804  ficfi 8199  Basecbs 15695  lecple 15775  topGenctg 15921  ordTopcordt 15982   Preset cpreset 16749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fv 5812  df-ordt 15984  df-preset 16751
This theorem is referenced by:  ordtcnvNEW  29294  ordtrest2NEW  29297  ordtconlem1  29298
  Copyright terms: Public domain W3C validator