MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtcnv Structured version   Visualization version   GIF version

Theorem ordtcnv 20815
Description: The order dual generates the same topology as the original order. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
ordtcnv (𝑅 ∈ PosetRel → (ordTop‘𝑅) = (ordTop‘𝑅))

Proof of Theorem ordtcnv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . . . . . . 8 dom 𝑅 = dom 𝑅
21psrn 17032 . . . . . . 7 (𝑅 ∈ PosetRel → dom 𝑅 = ran 𝑅)
32eqcomd 2616 . . . . . 6 (𝑅 ∈ PosetRel → ran 𝑅 = dom 𝑅)
43sneqd 4137 . . . . 5 (𝑅 ∈ PosetRel → {ran 𝑅} = {dom 𝑅})
5 vex 3176 . . . . . . . . . . . . 13 𝑦 ∈ V
6 vex 3176 . . . . . . . . . . . . 13 𝑥 ∈ V
75, 6brcnv 5227 . . . . . . . . . . . 12 (𝑦𝑅𝑥𝑥𝑅𝑦)
87a1i 11 . . . . . . . . . . 11 (𝑅 ∈ PosetRel → (𝑦𝑅𝑥𝑥𝑅𝑦))
98notbid 307 . . . . . . . . . 10 (𝑅 ∈ PosetRel → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑥𝑅𝑦))
103, 9rabeqbidv 3168 . . . . . . . . 9 (𝑅 ∈ PosetRel → {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥} = {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦})
113, 10mpteq12dv 4663 . . . . . . . 8 (𝑅 ∈ PosetRel → (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) = (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}))
1211rneqd 5274 . . . . . . 7 (𝑅 ∈ PosetRel → ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) = ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}))
136, 5brcnv 5227 . . . . . . . . . . . 12 (𝑥𝑅𝑦𝑦𝑅𝑥)
1413a1i 11 . . . . . . . . . . 11 (𝑅 ∈ PosetRel → (𝑥𝑅𝑦𝑦𝑅𝑥))
1514notbid 307 . . . . . . . . . 10 (𝑅 ∈ PosetRel → (¬ 𝑥𝑅𝑦 ↔ ¬ 𝑦𝑅𝑥))
163, 15rabeqbidv 3168 . . . . . . . . 9 (𝑅 ∈ PosetRel → {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦} = {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥})
173, 16mpteq12dv 4663 . . . . . . . 8 (𝑅 ∈ PosetRel → (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦}) = (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}))
1817rneqd 5274 . . . . . . 7 (𝑅 ∈ PosetRel → ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦}) = ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}))
1912, 18uneq12d 3730 . . . . . 6 (𝑅 ∈ PosetRel → (ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦})) = (ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥})))
20 uncom 3719 . . . . . 6 (ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}) ∪ ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥})) = (ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}))
2119, 20syl6eq 2660 . . . . 5 (𝑅 ∈ PosetRel → (ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦})) = (ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦})))
224, 21uneq12d 3730 . . . 4 (𝑅 ∈ PosetRel → ({ran 𝑅} ∪ (ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦}))) = ({dom 𝑅} ∪ (ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}))))
2322fveq2d 6107 . . 3 (𝑅 ∈ PosetRel → (fi‘({ran 𝑅} ∪ (ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦})))) = (fi‘({dom 𝑅} ∪ (ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦})))))
2423fveq2d 6107 . 2 (𝑅 ∈ PosetRel → (topGen‘(fi‘({ran 𝑅} ∪ (ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦}))))) = (topGen‘(fi‘({dom 𝑅} ∪ (ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}))))))
25 cnvps 17035 . . 3 (𝑅 ∈ PosetRel → 𝑅 ∈ PosetRel)
26 df-rn 5049 . . . 4 ran 𝑅 = dom 𝑅
27 eqid 2610 . . . 4 ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) = ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥})
28 eqid 2610 . . . 4 ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦}) = ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦})
2926, 27, 28ordtval 20803 . . 3 (𝑅 ∈ PosetRel → (ordTop‘𝑅) = (topGen‘(fi‘({ran 𝑅} ∪ (ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦}))))))
3025, 29syl 17 . 2 (𝑅 ∈ PosetRel → (ordTop‘𝑅) = (topGen‘(fi‘({ran 𝑅} ∪ (ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ ran 𝑅 ↦ {𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥𝑅𝑦}))))))
31 eqid 2610 . . 3 ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}) = ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥})
32 eqid 2610 . . 3 ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}) = ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦})
331, 31, 32ordtval 20803 . 2 (𝑅 ∈ PosetRel → (ordTop‘𝑅) = (topGen‘(fi‘({dom 𝑅} ∪ (ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦𝑅𝑥}) ∪ ran (𝑥 ∈ dom 𝑅 ↦ {𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥𝑅𝑦}))))))
3424, 30, 333eqtr4d 2654 1 (𝑅 ∈ PosetRel → (ordTop‘𝑅) = (ordTop‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195   = wceq 1475  wcel 1977  {crab 2900  cun 3538  {csn 4125   class class class wbr 4583  cmpt 4643  ccnv 5037  dom cdm 5038  ran crn 5039  cfv 5804  ficfi 8199  topGenctg 15921  ordTopcordt 15982  PosetRelcps 17021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-iota 5768  df-fun 5806  df-fv 5812  df-ordt 15984  df-ps 17023
This theorem is referenced by:  ordtrest2  20818  cnvordtrestixx  29287
  Copyright terms: Public domain W3C validator