MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtcnv Unicode version

Theorem ordtcnv 17219
Description: The order dual generates the same topology as the original order. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
ordtcnv  |-  ( R  e.  PosetRel  ->  (ordTop `  `' R
)  =  (ordTop `  R ) )

Proof of Theorem ordtcnv
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2404 . . . . . . . 8  |-  dom  R  =  dom  R
21psrn 14596 . . . . . . 7  |-  ( R  e.  PosetRel  ->  dom  R  =  ran  R )
32eqcomd 2409 . . . . . 6  |-  ( R  e.  PosetRel  ->  ran  R  =  dom  R )
43sneqd 3787 . . . . 5  |-  ( R  e.  PosetRel  ->  { ran  R }  =  { dom  R } )
5 vex 2919 . . . . . . . . . . . . 13  |-  y  e. 
_V
6 vex 2919 . . . . . . . . . . . . 13  |-  x  e. 
_V
75, 6brcnv 5014 . . . . . . . . . . . 12  |-  ( y `' R x  <->  x R
y )
87a1i 11 . . . . . . . . . . 11  |-  ( R  e.  PosetRel  ->  ( y `' R x  <->  x R
y ) )
98notbid 286 . . . . . . . . . 10  |-  ( R  e.  PosetRel  ->  ( -.  y `' R x  <->  -.  x R y ) )
103, 9rabeqbidv 2911 . . . . . . . . 9  |-  ( R  e.  PosetRel  ->  { y  e. 
ran  R  |  -.  y `' R x }  =  { y  e.  dom  R  |  -.  x R y } )
113, 10mpteq12dv 4247 . . . . . . . 8  |-  ( R  e.  PosetRel  ->  ( x  e. 
ran  R  |->  { y  e.  ran  R  |  -.  y `' R x } )  =  ( x  e.  dom  R  |->  { y  e.  dom  R  |  -.  x R y } ) )
1211rneqd 5056 . . . . . . 7  |-  ( R  e.  PosetRel  ->  ran  ( x  e.  ran  R  |->  { y  e.  ran  R  |  -.  y `' R x } )  =  ran  ( x  e.  dom  R 
|->  { y  e.  dom  R  |  -.  x R y } ) )
136, 5brcnv 5014 . . . . . . . . . . . 12  |-  ( x `' R y  <->  y R x )
1413a1i 11 . . . . . . . . . . 11  |-  ( R  e.  PosetRel  ->  ( x `' R y  <->  y R x ) )
1514notbid 286 . . . . . . . . . 10  |-  ( R  e.  PosetRel  ->  ( -.  x `' R y  <->  -.  y R x ) )
163, 15rabeqbidv 2911 . . . . . . . . 9  |-  ( R  e.  PosetRel  ->  { y  e. 
ran  R  |  -.  x `' R y }  =  { y  e.  dom  R  |  -.  y R x } )
173, 16mpteq12dv 4247 . . . . . . . 8  |-  ( R  e.  PosetRel  ->  ( x  e. 
ran  R  |->  { y  e.  ran  R  |  -.  x `' R y } )  =  ( x  e.  dom  R  |->  { y  e.  dom  R  |  -.  y R x } ) )
1817rneqd 5056 . . . . . . 7  |-  ( R  e.  PosetRel  ->  ran  ( x  e.  ran  R  |->  { y  e.  ran  R  |  -.  x `' R y } )  =  ran  ( x  e.  dom  R 
|->  { y  e.  dom  R  |  -.  y R x } ) )
1912, 18uneq12d 3462 . . . . . 6  |-  ( R  e.  PosetRel  ->  ( ran  (
x  e.  ran  R  |->  { y  e.  ran  R  |  -.  y `' R x } )  u.  ran  ( x  e.  ran  R  |->  { y  e.  ran  R  |  -.  x `' R
y } ) )  =  ( ran  (
x  e.  dom  R  |->  { y  e.  dom  R  |  -.  x R y } )  u. 
ran  ( x  e. 
dom  R  |->  { y  e.  dom  R  |  -.  y R x }
) ) )
20 uncom 3451 . . . . . 6  |-  ( ran  ( x  e.  dom  R 
|->  { y  e.  dom  R  |  -.  x R y } )  u. 
ran  ( x  e. 
dom  R  |->  { y  e.  dom  R  |  -.  y R x }
) )  =  ( ran  ( x  e. 
dom  R  |->  { y  e.  dom  R  |  -.  y R x }
)  u.  ran  (
x  e.  dom  R  |->  { y  e.  dom  R  |  -.  x R y } ) )
2119, 20syl6eq 2452 . . . . 5  |-  ( R  e.  PosetRel  ->  ( ran  (
x  e.  ran  R  |->  { y  e.  ran  R  |  -.  y `' R x } )  u.  ran  ( x  e.  ran  R  |->  { y  e.  ran  R  |  -.  x `' R
y } ) )  =  ( ran  (
x  e.  dom  R  |->  { y  e.  dom  R  |  -.  y R x } )  u. 
ran  ( x  e. 
dom  R  |->  { y  e.  dom  R  |  -.  x R y } ) ) )
224, 21uneq12d 3462 . . . 4  |-  ( R  e.  PosetRel  ->  ( { ran  R }  u.  ( ran  ( x  e.  ran  R 
|->  { y  e.  ran  R  |  -.  y `' R x } )  u.  ran  ( x  e.  ran  R  |->  { y  e.  ran  R  |  -.  x `' R
y } ) ) )  =  ( { dom  R }  u.  ( ran  ( x  e. 
dom  R  |->  { y  e.  dom  R  |  -.  y R x }
)  u.  ran  (
x  e.  dom  R  |->  { y  e.  dom  R  |  -.  x R y } ) ) ) )
2322fveq2d 5691 . . 3  |-  ( R  e.  PosetRel  ->  ( fi `  ( { ran  R }  u.  ( ran  ( x  e.  ran  R  |->  { y  e.  ran  R  |  -.  y `' R x } )  u.  ran  ( x  e.  ran  R 
|->  { y  e.  ran  R  |  -.  x `' R y } ) ) ) )  =  ( fi `  ( { dom  R }  u.  ( ran  ( x  e. 
dom  R  |->  { y  e.  dom  R  |  -.  y R x }
)  u.  ran  (
x  e.  dom  R  |->  { y  e.  dom  R  |  -.  x R y } ) ) ) ) )
2423fveq2d 5691 . 2  |-  ( R  e.  PosetRel  ->  ( topGen `  ( fi `  ( { ran  R }  u.  ( ran  ( x  e.  ran  R 
|->  { y  e.  ran  R  |  -.  y `' R x } )  u.  ran  ( x  e.  ran  R  |->  { y  e.  ran  R  |  -.  x `' R
y } ) ) ) ) )  =  ( topGen `  ( fi `  ( { dom  R }  u.  ( ran  ( x  e.  dom  R 
|->  { y  e.  dom  R  |  -.  y R x } )  u. 
ran  ( x  e. 
dom  R  |->  { y  e.  dom  R  |  -.  x R y } ) ) ) ) ) )
25 cnvps 14599 . . 3  |-  ( R  e.  PosetRel  ->  `' R  e.  PosetRel )
26 df-rn 4848 . . . 4  |-  ran  R  =  dom  `' R
27 eqid 2404 . . . 4  |-  ran  (
x  e.  ran  R  |->  { y  e.  ran  R  |  -.  y `' R x } )  =  ran  ( x  e.  ran  R  |->  { y  e.  ran  R  |  -.  y `' R x } )
28 eqid 2404 . . . 4  |-  ran  (
x  e.  ran  R  |->  { y  e.  ran  R  |  -.  x `' R y } )  =  ran  ( x  e.  ran  R  |->  { y  e.  ran  R  |  -.  x `' R
y } )
2926, 27, 28ordtval 17207 . . 3  |-  ( `' R  e.  PosetRel  ->  (ordTop `  `' R )  =  (
topGen `  ( fi `  ( { ran  R }  u.  ( ran  ( x  e.  ran  R  |->  { y  e.  ran  R  |  -.  y `' R x } )  u.  ran  ( x  e.  ran  R 
|->  { y  e.  ran  R  |  -.  x `' R y } ) ) ) ) ) )
3025, 29syl 16 . 2  |-  ( R  e.  PosetRel  ->  (ordTop `  `' R
)  =  ( topGen `  ( fi `  ( { ran  R }  u.  ( ran  ( x  e. 
ran  R  |->  { y  e.  ran  R  |  -.  y `' R x } )  u.  ran  ( x  e.  ran  R 
|->  { y  e.  ran  R  |  -.  x `' R y } ) ) ) ) ) )
31 eqid 2404 . . 3  |-  ran  (
x  e.  dom  R  |->  { y  e.  dom  R  |  -.  y R x } )  =  ran  ( x  e. 
dom  R  |->  { y  e.  dom  R  |  -.  y R x }
)
32 eqid 2404 . . 3  |-  ran  (
x  e.  dom  R  |->  { y  e.  dom  R  |  -.  x R y } )  =  ran  ( x  e. 
dom  R  |->  { y  e.  dom  R  |  -.  x R y } )
331, 31, 32ordtval 17207 . 2  |-  ( R  e.  PosetRel  ->  (ordTop `  R )  =  ( topGen `  ( fi `  ( { dom  R }  u.  ( ran  ( x  e.  dom  R 
|->  { y  e.  dom  R  |  -.  y R x } )  u. 
ran  ( x  e. 
dom  R  |->  { y  e.  dom  R  |  -.  x R y } ) ) ) ) ) )
3424, 30, 333eqtr4d 2446 1  |-  ( R  e.  PosetRel  ->  (ordTop `  `' R
)  =  (ordTop `  R ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    = wceq 1649    e. wcel 1721   {crab 2670    u. cun 3278   {csn 3774   class class class wbr 4172    e. cmpt 4226   `'ccnv 4836   dom cdm 4837   ran crn 4838   ` cfv 5413   ficfi 7373   topGenctg 13620  ordTopcordt 13676   PosetRelcps 14579
This theorem is referenced by:  ordtrest2  17222  cnvordtrestixx  24264
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-iota 5377  df-fun 5415  df-fv 5421  df-ordt 13680  df-ps 14584
  Copyright terms: Public domain W3C validator