Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > opsqrlem3 | Structured version Visualization version GIF version |
Description: Lemma for opsqri . (Contributed by NM, 22-Aug-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
opsqrlem2.1 | ⊢ 𝑇 ∈ HrmOp |
opsqrlem2.2 | ⊢ 𝑆 = (𝑥 ∈ HrmOp, 𝑦 ∈ HrmOp ↦ (𝑥 +op ((1 / 2) ·op (𝑇 −op (𝑥 ∘ 𝑥))))) |
opsqrlem2.3 | ⊢ 𝐹 = seq1(𝑆, (ℕ × { 0hop })) |
Ref | Expression |
---|---|
opsqrlem3 | ⊢ ((𝐺 ∈ HrmOp ∧ 𝐻 ∈ HrmOp) → (𝐺𝑆𝐻) = (𝐺 +op ((1 / 2) ·op (𝑇 −op (𝐺 ∘ 𝐺))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (𝑧 = 𝐺 → 𝑧 = 𝐺) | |
2 | 1, 1 | coeq12d 5208 | . . . . 5 ⊢ (𝑧 = 𝐺 → (𝑧 ∘ 𝑧) = (𝐺 ∘ 𝐺)) |
3 | 2 | oveq2d 6565 | . . . 4 ⊢ (𝑧 = 𝐺 → (𝑇 −op (𝑧 ∘ 𝑧)) = (𝑇 −op (𝐺 ∘ 𝐺))) |
4 | 3 | oveq2d 6565 | . . 3 ⊢ (𝑧 = 𝐺 → ((1 / 2) ·op (𝑇 −op (𝑧 ∘ 𝑧))) = ((1 / 2) ·op (𝑇 −op (𝐺 ∘ 𝐺)))) |
5 | 1, 4 | oveq12d 6567 | . 2 ⊢ (𝑧 = 𝐺 → (𝑧 +op ((1 / 2) ·op (𝑇 −op (𝑧 ∘ 𝑧)))) = (𝐺 +op ((1 / 2) ·op (𝑇 −op (𝐺 ∘ 𝐺))))) |
6 | eqidd 2611 | . 2 ⊢ (𝑤 = 𝐻 → (𝐺 +op ((1 / 2) ·op (𝑇 −op (𝐺 ∘ 𝐺)))) = (𝐺 +op ((1 / 2) ·op (𝑇 −op (𝐺 ∘ 𝐺))))) | |
7 | opsqrlem2.2 | . . 3 ⊢ 𝑆 = (𝑥 ∈ HrmOp, 𝑦 ∈ HrmOp ↦ (𝑥 +op ((1 / 2) ·op (𝑇 −op (𝑥 ∘ 𝑥))))) | |
8 | id 22 | . . . . 5 ⊢ (𝑥 = 𝑧 → 𝑥 = 𝑧) | |
9 | 8, 8 | coeq12d 5208 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (𝑥 ∘ 𝑥) = (𝑧 ∘ 𝑧)) |
10 | 9 | oveq2d 6565 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝑇 −op (𝑥 ∘ 𝑥)) = (𝑇 −op (𝑧 ∘ 𝑧))) |
11 | 10 | oveq2d 6565 | . . . . 5 ⊢ (𝑥 = 𝑧 → ((1 / 2) ·op (𝑇 −op (𝑥 ∘ 𝑥))) = ((1 / 2) ·op (𝑇 −op (𝑧 ∘ 𝑧)))) |
12 | 8, 11 | oveq12d 6567 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝑥 +op ((1 / 2) ·op (𝑇 −op (𝑥 ∘ 𝑥)))) = (𝑧 +op ((1 / 2) ·op (𝑇 −op (𝑧 ∘ 𝑧))))) |
13 | eqidd 2611 | . . . 4 ⊢ (𝑦 = 𝑤 → (𝑧 +op ((1 / 2) ·op (𝑇 −op (𝑧 ∘ 𝑧)))) = (𝑧 +op ((1 / 2) ·op (𝑇 −op (𝑧 ∘ 𝑧))))) | |
14 | 12, 13 | cbvmpt2v 6633 | . . 3 ⊢ (𝑥 ∈ HrmOp, 𝑦 ∈ HrmOp ↦ (𝑥 +op ((1 / 2) ·op (𝑇 −op (𝑥 ∘ 𝑥))))) = (𝑧 ∈ HrmOp, 𝑤 ∈ HrmOp ↦ (𝑧 +op ((1 / 2) ·op (𝑇 −op (𝑧 ∘ 𝑧))))) |
15 | 7, 14 | eqtri 2632 | . 2 ⊢ 𝑆 = (𝑧 ∈ HrmOp, 𝑤 ∈ HrmOp ↦ (𝑧 +op ((1 / 2) ·op (𝑇 −op (𝑧 ∘ 𝑧))))) |
16 | ovex 6577 | . 2 ⊢ (𝐺 +op ((1 / 2) ·op (𝑇 −op (𝐺 ∘ 𝐺)))) ∈ V | |
17 | 5, 6, 15, 16 | ovmpt2 6694 | 1 ⊢ ((𝐺 ∈ HrmOp ∧ 𝐻 ∈ HrmOp) → (𝐺𝑆𝐻) = (𝐺 +op ((1 / 2) ·op (𝑇 −op (𝐺 ∘ 𝐺))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 {csn 4125 × cxp 5036 ∘ ccom 5042 (class class class)co 6549 ↦ cmpt2 6551 1c1 9816 / cdiv 10563 ℕcn 10897 2c2 10947 seqcseq 12663 +op chos 27179 ·op chot 27180 −op chod 27181 0hop ch0o 27184 HrmOpcho 27191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-iota 5768 df-fun 5806 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 |
This theorem is referenced by: opsqrlem4 28386 opsqrlem5 28387 |
Copyright terms: Public domain | W3C validator |