HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  opsqrlem3 Structured version   Unicode version

Theorem opsqrlem3 25691
Description: Lemma for opsqri . (Contributed by NM, 22-Aug-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
opsqrlem2.1  |-  T  e. 
HrmOp
opsqrlem2.2  |-  S  =  ( x  e.  HrmOp ,  y  e.  HrmOp  |->  ( x 
+op  ( ( 1  /  2 )  .op  ( T  -op  ( x  o.  x ) ) ) ) )
opsqrlem2.3  |-  F  =  seq 1 ( S ,  ( NN  X.  { 0hop } ) )
Assertion
Ref Expression
opsqrlem3  |-  ( ( G  e.  HrmOp  /\  H  e.  HrmOp )  ->  ( G S H )  =  ( G  +op  (
( 1  /  2
)  .op  ( T  -op  ( G  o.  G
) ) ) ) )
Distinct variable group:    x, y, T
Allowed substitution hints:    S( x, y)    F( x, y)    G( x, y)    H( x, y)

Proof of Theorem opsqrlem3
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3  |-  ( z  =  G  ->  z  =  G )
21, 1coeq12d 5105 . . . . 5  |-  ( z  =  G  ->  (
z  o.  z )  =  ( G  o.  G ) )
32oveq2d 6209 . . . 4  |-  ( z  =  G  ->  ( T  -op  ( z  o.  z ) )  =  ( T  -op  ( G  o.  G )
) )
43oveq2d 6209 . . 3  |-  ( z  =  G  ->  (
( 1  /  2
)  .op  ( T  -op  ( z  o.  z
) ) )  =  ( ( 1  / 
2 )  .op  ( T  -op  ( G  o.  G ) ) ) )
51, 4oveq12d 6211 . 2  |-  ( z  =  G  ->  (
z  +op  ( (
1  /  2 ) 
.op  ( T  -op  ( z  o.  z
) ) ) )  =  ( G  +op  ( ( 1  / 
2 )  .op  ( T  -op  ( G  o.  G ) ) ) ) )
6 eqidd 2452 . 2  |-  ( w  =  H  ->  ( G  +op  ( ( 1  /  2 )  .op  ( T  -op  ( G  o.  G ) ) ) )  =  ( G  +op  ( ( 1  /  2 ) 
.op  ( T  -op  ( G  o.  G
) ) ) ) )
7 opsqrlem2.2 . . 3  |-  S  =  ( x  e.  HrmOp ,  y  e.  HrmOp  |->  ( x 
+op  ( ( 1  /  2 )  .op  ( T  -op  ( x  o.  x ) ) ) ) )
8 id 22 . . . . 5  |-  ( x  =  z  ->  x  =  z )
98, 8coeq12d 5105 . . . . . . 7  |-  ( x  =  z  ->  (
x  o.  x )  =  ( z  o.  z ) )
109oveq2d 6209 . . . . . 6  |-  ( x  =  z  ->  ( T  -op  ( x  o.  x ) )  =  ( T  -op  (
z  o.  z ) ) )
1110oveq2d 6209 . . . . 5  |-  ( x  =  z  ->  (
( 1  /  2
)  .op  ( T  -op  ( x  o.  x
) ) )  =  ( ( 1  / 
2 )  .op  ( T  -op  ( z  o.  z ) ) ) )
128, 11oveq12d 6211 . . . 4  |-  ( x  =  z  ->  (
x  +op  ( (
1  /  2 ) 
.op  ( T  -op  ( x  o.  x
) ) ) )  =  ( z  +op  ( ( 1  / 
2 )  .op  ( T  -op  ( z  o.  z ) ) ) ) )
13 eqidd 2452 . . . 4  |-  ( y  =  w  ->  (
z  +op  ( (
1  /  2 ) 
.op  ( T  -op  ( z  o.  z
) ) ) )  =  ( z  +op  ( ( 1  / 
2 )  .op  ( T  -op  ( z  o.  z ) ) ) ) )
1412, 13cbvmpt2v 6268 . . 3  |-  ( x  e.  HrmOp ,  y  e. 
HrmOp  |->  ( x  +op  ( ( 1  / 
2 )  .op  ( T  -op  ( x  o.  x ) ) ) ) )  =  ( z  e.  HrmOp ,  w  e.  HrmOp  |->  ( z  +op  ( ( 1  / 
2 )  .op  ( T  -op  ( z  o.  z ) ) ) ) )
157, 14eqtri 2480 . 2  |-  S  =  ( z  e.  HrmOp ,  w  e.  HrmOp  |->  ( z 
+op  ( ( 1  /  2 )  .op  ( T  -op  ( z  o.  z ) ) ) ) )
16 ovex 6218 . 2  |-  ( G 
+op  ( ( 1  /  2 )  .op  ( T  -op  ( G  o.  G ) ) ) )  e.  _V
175, 6, 15, 16ovmpt2 6329 1  |-  ( ( G  e.  HrmOp  /\  H  e.  HrmOp )  ->  ( G S H )  =  ( G  +op  (
( 1  /  2
)  .op  ( T  -op  ( G  o.  G
) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   {csn 3978    X. cxp 4939    o. ccom 4945  (class class class)co 6193    |-> cmpt2 6195   1c1 9387    / cdiv 10097   NNcn 10426   2c2 10475    seqcseq 11916    +op chos 24485    .op chot 24486    -op chod 24487   0hopch0o 24490   HrmOpcho 24497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4514  ax-nul 4522  ax-pr 4632
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-rab 2804  df-v 3073  df-sbc 3288  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-nul 3739  df-if 3893  df-sn 3979  df-pr 3981  df-op 3985  df-uni 4193  df-br 4394  df-opab 4452  df-id 4737  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-iota 5482  df-fun 5521  df-fv 5527  df-ov 6196  df-oprab 6197  df-mpt2 6198
This theorem is referenced by:  opsqrlem4  25692  opsqrlem5  25693
  Copyright terms: Public domain W3C validator