MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppcval Structured version   Visualization version   GIF version

Theorem oppcval 16196
Description: Value of the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
oppcval.b 𝐵 = (Base‘𝐶)
oppcval.h 𝐻 = (Hom ‘𝐶)
oppcval.x · = (comp‘𝐶)
oppcval.o 𝑂 = (oppCat‘𝐶)
Assertion
Ref Expression
oppcval (𝐶𝑉𝑂 = ((𝐶 sSet ⟨(Hom ‘ndx), tpos 𝐻⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))⟩))
Distinct variable group:   𝑧,𝑢,𝐶
Allowed substitution hints:   𝐵(𝑧,𝑢)   · (𝑧,𝑢)   𝐻(𝑧,𝑢)   𝑂(𝑧,𝑢)   𝑉(𝑧,𝑢)

Proof of Theorem oppcval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 oppcval.o . 2 𝑂 = (oppCat‘𝐶)
2 elex 3185 . . 3 (𝐶𝑉𝐶 ∈ V)
3 id 22 . . . . . 6 (𝑐 = 𝐶𝑐 = 𝐶)
4 fveq2 6103 . . . . . . . . 9 (𝑐 = 𝐶 → (Hom ‘𝑐) = (Hom ‘𝐶))
5 oppcval.h . . . . . . . . 9 𝐻 = (Hom ‘𝐶)
64, 5syl6eqr 2662 . . . . . . . 8 (𝑐 = 𝐶 → (Hom ‘𝑐) = 𝐻)
76tposeqd 7242 . . . . . . 7 (𝑐 = 𝐶 → tpos (Hom ‘𝑐) = tpos 𝐻)
87opeq2d 4347 . . . . . 6 (𝑐 = 𝐶 → ⟨(Hom ‘ndx), tpos (Hom ‘𝑐)⟩ = ⟨(Hom ‘ndx), tpos 𝐻⟩)
93, 8oveq12d 6567 . . . . 5 (𝑐 = 𝐶 → (𝑐 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝑐)⟩) = (𝐶 sSet ⟨(Hom ‘ndx), tpos 𝐻⟩))
10 fveq2 6103 . . . . . . . . 9 (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶))
11 oppcval.b . . . . . . . . 9 𝐵 = (Base‘𝐶)
1210, 11syl6eqr 2662 . . . . . . . 8 (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵)
1312sqxpeqd 5065 . . . . . . 7 (𝑐 = 𝐶 → ((Base‘𝑐) × (Base‘𝑐)) = (𝐵 × 𝐵))
14 fveq2 6103 . . . . . . . . . 10 (𝑐 = 𝐶 → (comp‘𝑐) = (comp‘𝐶))
15 oppcval.x . . . . . . . . . 10 · = (comp‘𝐶)
1614, 15syl6eqr 2662 . . . . . . . . 9 (𝑐 = 𝐶 → (comp‘𝑐) = · )
1716oveqd 6566 . . . . . . . 8 (𝑐 = 𝐶 → (⟨𝑧, (2nd𝑢)⟩(comp‘𝑐)(1st𝑢)) = (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))
1817tposeqd 7242 . . . . . . 7 (𝑐 = 𝐶 → tpos (⟨𝑧, (2nd𝑢)⟩(comp‘𝑐)(1st𝑢)) = tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))
1913, 12, 18mpt2eq123dv 6615 . . . . . 6 (𝑐 = 𝐶 → (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑐)), 𝑧 ∈ (Base‘𝑐) ↦ tpos (⟨𝑧, (2nd𝑢)⟩(comp‘𝑐)(1st𝑢))) = (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢))))
2019opeq2d 4347 . . . . 5 (𝑐 = 𝐶 → ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑐)), 𝑧 ∈ (Base‘𝑐) ↦ tpos (⟨𝑧, (2nd𝑢)⟩(comp‘𝑐)(1st𝑢)))⟩ = ⟨(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))⟩)
219, 20oveq12d 6567 . . . 4 (𝑐 = 𝐶 → ((𝑐 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝑐)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑐)), 𝑧 ∈ (Base‘𝑐) ↦ tpos (⟨𝑧, (2nd𝑢)⟩(comp‘𝑐)(1st𝑢)))⟩) = ((𝐶 sSet ⟨(Hom ‘ndx), tpos 𝐻⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))⟩))
22 df-oppc 16195 . . . 4 oppCat = (𝑐 ∈ V ↦ ((𝑐 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝑐)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑐)), 𝑧 ∈ (Base‘𝑐) ↦ tpos (⟨𝑧, (2nd𝑢)⟩(comp‘𝑐)(1st𝑢)))⟩))
23 ovex 6577 . . . 4 ((𝐶 sSet ⟨(Hom ‘ndx), tpos 𝐻⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))⟩) ∈ V
2421, 22, 23fvmpt 6191 . . 3 (𝐶 ∈ V → (oppCat‘𝐶) = ((𝐶 sSet ⟨(Hom ‘ndx), tpos 𝐻⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))⟩))
252, 24syl 17 . 2 (𝐶𝑉 → (oppCat‘𝐶) = ((𝐶 sSet ⟨(Hom ‘ndx), tpos 𝐻⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))⟩))
261, 25syl5eq 2656 1 (𝐶𝑉𝑂 = ((𝐶 sSet ⟨(Hom ‘ndx), tpos 𝐻⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ tpos (⟨𝑧, (2nd𝑢)⟩ · (1st𝑢)))⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  Vcvv 3173  cop 4131   × cxp 5036  cfv 5804  (class class class)co 6549  cmpt2 6551  1st c1st 7057  2nd c2nd 7058  tpos ctpos 7238  ndxcnx 15692   sSet csts 15693  Basecbs 15695  Hom chom 15779  compcco 15780  oppCatcoppc 16194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-res 5050  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-tpos 7239  df-oppc 16195
This theorem is referenced by:  oppchomfval  16197  oppccofval  16199  oppcbas  16201  catcoppccl  16581
  Copyright terms: Public domain W3C validator