Step | Hyp | Ref
| Expression |
1 | | oppcval.o |
. 2
⊢ 𝑂 = (oppCat‘𝐶) |
2 | | elex 3185 |
. . 3
⊢ (𝐶 ∈ 𝑉 → 𝐶 ∈ V) |
3 | | id 22 |
. . . . . 6
⊢ (𝑐 = 𝐶 → 𝑐 = 𝐶) |
4 | | fveq2 6103 |
. . . . . . . . 9
⊢ (𝑐 = 𝐶 → (Hom ‘𝑐) = (Hom ‘𝐶)) |
5 | | oppcval.h |
. . . . . . . . 9
⊢ 𝐻 = (Hom ‘𝐶) |
6 | 4, 5 | syl6eqr 2662 |
. . . . . . . 8
⊢ (𝑐 = 𝐶 → (Hom ‘𝑐) = 𝐻) |
7 | 6 | tposeqd 7242 |
. . . . . . 7
⊢ (𝑐 = 𝐶 → tpos (Hom ‘𝑐) = tpos 𝐻) |
8 | 7 | opeq2d 4347 |
. . . . . 6
⊢ (𝑐 = 𝐶 → 〈(Hom ‘ndx), tpos (Hom
‘𝑐)〉 =
〈(Hom ‘ndx), tpos 𝐻〉) |
9 | 3, 8 | oveq12d 6567 |
. . . . 5
⊢ (𝑐 = 𝐶 → (𝑐 sSet 〈(Hom ‘ndx), tpos (Hom
‘𝑐)〉) = (𝐶 sSet 〈(Hom ‘ndx),
tpos 𝐻〉)) |
10 | | fveq2 6103 |
. . . . . . . . 9
⊢ (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶)) |
11 | | oppcval.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝐶) |
12 | 10, 11 | syl6eqr 2662 |
. . . . . . . 8
⊢ (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵) |
13 | 12 | sqxpeqd 5065 |
. . . . . . 7
⊢ (𝑐 = 𝐶 → ((Base‘𝑐) × (Base‘𝑐)) = (𝐵 × 𝐵)) |
14 | | fveq2 6103 |
. . . . . . . . . 10
⊢ (𝑐 = 𝐶 → (comp‘𝑐) = (comp‘𝐶)) |
15 | | oppcval.x |
. . . . . . . . . 10
⊢ · =
(comp‘𝐶) |
16 | 14, 15 | syl6eqr 2662 |
. . . . . . . . 9
⊢ (𝑐 = 𝐶 → (comp‘𝑐) = · ) |
17 | 16 | oveqd 6566 |
. . . . . . . 8
⊢ (𝑐 = 𝐶 → (〈𝑧, (2nd ‘𝑢)〉(comp‘𝑐)(1st ‘𝑢)) = (〈𝑧, (2nd ‘𝑢)〉 · (1st
‘𝑢))) |
18 | 17 | tposeqd 7242 |
. . . . . . 7
⊢ (𝑐 = 𝐶 → tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝑐)(1st ‘𝑢)) = tpos (〈𝑧, (2nd ‘𝑢)〉 · (1st
‘𝑢))) |
19 | 13, 12, 18 | mpt2eq123dv 6615 |
. . . . . 6
⊢ (𝑐 = 𝐶 → (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑐)), 𝑧 ∈ (Base‘𝑐) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝑐)(1st ‘𝑢))) = (𝑢 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ tpos (〈𝑧, (2nd ‘𝑢)〉 · (1st
‘𝑢)))) |
20 | 19 | opeq2d 4347 |
. . . . 5
⊢ (𝑐 = 𝐶 → 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑐)), 𝑧 ∈ (Base‘𝑐) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝑐)(1st ‘𝑢)))〉 = 〈(comp‘ndx), (𝑢 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ tpos (〈𝑧, (2nd ‘𝑢)〉 · (1st
‘𝑢)))〉) |
21 | 9, 20 | oveq12d 6567 |
. . . 4
⊢ (𝑐 = 𝐶 → ((𝑐 sSet 〈(Hom ‘ndx), tpos (Hom
‘𝑐)〉) sSet
〈(comp‘ndx), (𝑢
∈ ((Base‘𝑐)
× (Base‘𝑐)),
𝑧 ∈ (Base‘𝑐) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝑐)(1st ‘𝑢)))〉) = ((𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉) sSet
〈(comp‘ndx), (𝑢
∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ tpos (〈𝑧, (2nd ‘𝑢)〉 · (1st
‘𝑢)))〉)) |
22 | | df-oppc 16195 |
. . . 4
⊢ oppCat =
(𝑐 ∈ V ↦ ((𝑐 sSet 〈(Hom ‘ndx),
tpos (Hom ‘𝑐)〉)
sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝑐) × (Base‘𝑐)), 𝑧 ∈ (Base‘𝑐) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝑐)(1st ‘𝑢)))〉)) |
23 | | ovex 6577 |
. . . 4
⊢ ((𝐶 sSet 〈(Hom ‘ndx),
tpos 𝐻〉) sSet
〈(comp‘ndx), (𝑢
∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ tpos (〈𝑧, (2nd ‘𝑢)〉 · (1st
‘𝑢)))〉) ∈
V |
24 | 21, 22, 23 | fvmpt 6191 |
. . 3
⊢ (𝐶 ∈ V →
(oppCat‘𝐶) = ((𝐶 sSet 〈(Hom ‘ndx),
tpos 𝐻〉) sSet
〈(comp‘ndx), (𝑢
∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ tpos (〈𝑧, (2nd ‘𝑢)〉 · (1st
‘𝑢)))〉)) |
25 | 2, 24 | syl 17 |
. 2
⊢ (𝐶 ∈ 𝑉 → (oppCat‘𝐶) = ((𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉) sSet
〈(comp‘ndx), (𝑢
∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ tpos (〈𝑧, (2nd ‘𝑢)〉 · (1st
‘𝑢)))〉)) |
26 | 1, 25 | syl5eq 2656 |
1
⊢ (𝐶 ∈ 𝑉 → 𝑂 = ((𝐶 sSet 〈(Hom ‘ndx), tpos 𝐻〉) sSet
〈(comp‘ndx), (𝑢
∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ tpos (〈𝑧, (2nd ‘𝑢)〉 · (1st
‘𝑢)))〉)) |