Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opmpt2ismgm Structured version   Visualization version   GIF version

Theorem opmpt2ismgm 41597
Description: A structure with a group addition operation in maps-to notation is a magma if the operation value is contained in the base set. (Contributed by AV, 16-Feb-2020.)
Hypotheses
Ref Expression
opmpt2ismgm.b 𝐵 = (Base‘𝑀)
opmpt2ismgm.p (+g𝑀) = (𝑥𝐵, 𝑦𝐵𝐶)
opmpt2ismgm.n (𝜑𝐵 ≠ ∅)
opmpt2ismgm.c ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐶𝐵)
Assertion
Ref Expression
opmpt2ismgm (𝜑𝑀 ∈ Mgm)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑀   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑀(𝑦)

Proof of Theorem opmpt2ismgm
Dummy variables 𝑎 𝑏 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opmpt2ismgm.c . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → 𝐶𝐵)
21ralrimivva 2954 . . . . 5 (𝜑 → ∀𝑥𝐵𝑦𝐵 𝐶𝐵)
32adantr 480 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → ∀𝑥𝐵𝑦𝐵 𝐶𝐵)
4 simprl 790 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝐵)
5 simprr 792 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝐵)
6 eqid 2610 . . . . 5 (𝑥𝐵, 𝑦𝐵𝐶) = (𝑥𝐵, 𝑦𝐵𝐶)
76ovmpt2elrn 7130 . . . 4 ((∀𝑥𝐵𝑦𝐵 𝐶𝐵𝑎𝐵𝑏𝐵) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏) ∈ 𝐵)
83, 4, 5, 7syl3anc 1318 . . 3 ((𝜑 ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏) ∈ 𝐵)
98ralrimivva 2954 . 2 (𝜑 → ∀𝑎𝐵𝑏𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏) ∈ 𝐵)
10 opmpt2ismgm.n . . 3 (𝜑𝐵 ≠ ∅)
11 n0 3890 . . . 4 (𝐵 ≠ ∅ ↔ ∃𝑒 𝑒𝐵)
12 opmpt2ismgm.b . . . . . 6 𝐵 = (Base‘𝑀)
13 opmpt2ismgm.p . . . . . . 7 (+g𝑀) = (𝑥𝐵, 𝑦𝐵𝐶)
1413eqcomi 2619 . . . . . 6 (𝑥𝐵, 𝑦𝐵𝐶) = (+g𝑀)
1512, 14ismgmn0 17067 . . . . 5 (𝑒𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑎𝐵𝑏𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏) ∈ 𝐵))
1615exlimiv 1845 . . . 4 (∃𝑒 𝑒𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑎𝐵𝑏𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏) ∈ 𝐵))
1711, 16sylbi 206 . . 3 (𝐵 ≠ ∅ → (𝑀 ∈ Mgm ↔ ∀𝑎𝐵𝑏𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏) ∈ 𝐵))
1810, 17syl 17 . 2 (𝜑 → (𝑀 ∈ Mgm ↔ ∀𝑎𝐵𝑏𝐵 (𝑎(𝑥𝐵, 𝑦𝐵𝐶)𝑏) ∈ 𝐵))
199, 18mpbird 246 1 (𝜑𝑀 ∈ Mgm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  wne 2780  wral 2896  c0 3874  cfv 5804  (class class class)co 6549  cmpt2 6551  Basecbs 15695  +gcplusg 15768  Mgmcmgm 17063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-mgm 17065
This theorem is referenced by:  copissgrp  41598
  Copyright terms: Public domain W3C validator